Skip to main content

SoK: Layer-Two Blockchain Protocols

  • Conference paper
  • First Online:
Financial Cryptography and Data Security (FC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12059))

Included in the following conference series:

Abstract

Blockchains have the potential to revolutionize markets and services. However, they currently exhibit high latencies and fail to handle transaction loads comparable to those managed by traditional financial systems. Layer-two protocols, built on top of (layer-one) blockchains, avoid disseminating every transaction to the whole network by exchanging authenticated transactions off-chain. Instead, they utilize the expensive and low-rate blockchain only as a recourse for disputes. The promise of layer-two protocols is to complete off-chain transactions in sub-seconds rather than minutes or hours while retaining asset security, reducing fees and allowing blockchains to scale.

We systematize the evolution of layer-two protocols over the period from the inception of cryptocurrencies in 2009 until today, structuring the multifaceted body of research on layer-two transactions. Categorizing the research into payment and state channels, commit-chains and protocols for refereed delegation, we provide a comparison of the protocols and their properties. We provide a systematization of the associated synchronization and routing protocols along with their privacy and security aspects. This Systematization of Knowledge (SoK) clears the layer-two fog, highlights the potential of layer-two solutions and identifies their unsolved challenges, indicating propitious avenues of future work.

The full version of this paper available at https://eprint.iacr.org/2019/360.pdf.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    While the earliest channel protocols differ slightly from the above three-part state replacement technique, they nonetheless fit within the framework of unanimous consent coupled with the local verification of state transitions.

  2. 2.

    Time locks define either absolute time expressed as a blockchain block height, or relative time expressed as the number of blocks that must elapse after a transaction is included in the blockchain.

  3. 3.

    Note that Tor-like routing is inappropriate, as Tor assumes a random relay selection, which wouldn’t account for channel capacities.

  4. 4.

    To mitigate the possibility of a false accusation attack by a user against the operator, the operator may require the user to subsidize the cost of a response to such a challenge. Note that this in turn may introduce a user grieving vector. To date, no appropriate parameterization or more elegant solution has been proposed.

  5. 5.

    In contrast to channels, commit-chains have not yet been specified to support arbitrary state transitions.

References

  1. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Čapkun, S.: On the security and performance of proof of work blockchains. In: Conference on Computer and Communications Security, pp. 3–16. ACM (2016)

    Google Scholar 

  2. Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 106–125. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4_8

    Chapter  Google Scholar 

  3. VISA: Visa inc. at a glance (2015). https://usa.visa.com/dam/VCOM/download/corporate/media/visa-fact-sheet-Jun2015.pdf

  4. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_12

    Chapter  Google Scholar 

  5. Buterin, V.: Slasher: A punitive proof-of-stake algorithm (2014). https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/

  6. Anon: Casper (2018). https://github.com/ethereum/casper

  7. Miller, A., Juels, A., Shi, E., Parno, B., Katz, J.: PermaCoin: repurposing bitcoin work for data preservation. In: Symposium on Security and Privacy, pp. 475–490 (2014)

    Google Scholar 

  8. Hønsi, T.: Spacemint-a cryptocurrency based on proofs of space. IACR Cryptology ePrint Archive (2017)

    Google Scholar 

  9. Sawtooth (2019). https://intelledger.github.io/introduction.html

  10. Kogias, E.K., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.: Enhancing bitcoin security and performance with strong consistency via collective signing. In: USENIX Security Symposium, pp. 279–296 (2016)

    Google Scholar 

  11. Luu, L., Narayanan, V., Baweja, K., Zheng, C., Gilbert, S., Saxena, P.: SCP: a computationally-scalable byzantine consensus protocol for blockchains. IACR Cryptology ePrint Archive 2015/1168 (2015)

    Google Scholar 

  12. Pass, R., Shi, E.: Hybrid consensus: efficient consensus in the permissionless model. In: 31 International Symposium on Distributed Computing, p. 6 (2017)

    Google Scholar 

  13. Eyal, I., Gencer, A.E., Sirer, E.G., Van Renesse, R.: Bitcoin-NG: a scalable blockchain protocol. In: Symposium on Networked Systems Design and Implementation, pp. 45–59 (2016)

    Google Scholar 

  14. Anon.: Sharding roadmap (2019). https://github.com/ethereum/wiki/wiki/Sharding-roadmap

  15. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure sharding protocol for open blockchains. In: Conference on Computer and Communications Security, pp. 17–30. ACM (2016)

    Google Scholar 

  16. Gencer, A.E., van Renesse, R., Sirer, E.G.: Service-oriented sharding with aspen. arXiv preprint arXiv:1611.06816 (2016)

  17. Zamani, M., Movahedi, M., Raykova, M.: Rapidchain: scaling blockchain via full sharding. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 931–948. ACM (2018)

    Google Scholar 

  18. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.: OmniLedger: a secure, scale-out, decentralized ledger via sharding. In: Symposium on Security and Privacy, pp. 583–598 (2018)

    Google Scholar 

  19. Back, A., et al.: Enabling blockchain innovations with pegged sidechains (2014). http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-pegged-sidechains

  20. Bano, S., et al.: Consensus in the age of blockchains. arXiv preprint arXiv:1711.03936 (2017)

  21. Bitcoin cash (2008). https://www.bitcoincash.org

  22. Hearn, M.: Micro-payment channels implementation now in bitcoinj (2013). https://bitcointalk.org/index.php?topic=244656.0

  23. Anon: bitcoinj (2019). https://bitcoinj.github.io/

  24. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015. LNCS, vol. 9212, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21741-3_1

    Chapter  Google Scholar 

  25. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant payments (2016). https://lightning.network/lightning-network-paper.pdf

  26. Khalil, R., Gervais, A., Felley, G.: NOCUST-a securely scalable commit-chain (2018). https://eprint.iacr.org/2018/642.pdf

  27. AG, B.T.: Raiden network (2019). https://raiden.network/

  28. Miller, A., Bentov, I., Kumaresan, R., McCorry, P.: Sprites: payment channels that go faster than lightning. arXiv preprint arXiv:1702.05812 (2017)

  29. Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: PERUN: virtual payment channels over cryptographic currencies. In: Symposium on Security and Privacy (2019)

    Google Scholar 

  30. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M.: SilentWhispers: enforcing security and privacy in credit networks. In: Network and Distributed System Security Symposium (2017)

    Google Scholar 

  31. Roos, S., Moreno-Sanchez, P., Kate, A., Goldberg, I.: Settling payments fast and private: efficient decentralized routing for path-based transactions (2018)

    Google Scholar 

  32. Sivaraman, V., Venkatakrishnan, S.B., Alizadeh, M., Fanti, G., Viswanath, P.: Routing cryptocurrency with the spider network. arXiv preprint arXiv:1809.05088 (2018)

  33. Sunshine, C.A.: Source routing in computer networks. SIGCOMM Comput. Commun. Rev. 7(1), 29–33 (1977)

    Article  Google Scholar 

  34. Anon: Lightning-onion (2018). https://github.com/lightningnetwork/lightning-onion

  35. Prihodko, P., Zhigulin, S., Sahno, M., Ostrovskiy, A., Osuntokun, O.: Flare: an approach to routing in lightning network (2016). https://bitfury.com/content/downloads/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf

  36. Khalil, R., Gervais, A.: Revive: rebalancing off-blockchain payment networks. In: Conference on Computer and Communications Security, pp. 439–453. ACM (2017)

    Google Scholar 

  37. Burchert, C., Decker, C., Wattenhofer, R.: Scalable funding of bitcoin micropayment channel networks. R. Soc. Open Sci. 5(8), 180089 (2018)

    Article  Google Scholar 

  38. Poon, J., Buterin, V.: Plasma: scalable autonomous smart contracts (2017). https://plasma.io/plasma.pdf

  39. Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.: TumbleBit: an untrusted bitcoin-compatible anonymous payment hub (2017)

    Google Scholar 

  40. Heilman, E., Lipmann, S., Goldberg, S.: The Arwen trading protocols (2019)

    Google Scholar 

  41. Green, M., Miers, I.: Bolt: anonymous payment channels for decentralized currencies. In: Conference on Computer and Communications Security, pp. 473–489. ACM (2017)

    Google Scholar 

  42. Heilman, E., Baldimtsi, F., Goldberg, S.: Blindly signed contracts: anonymous on-blockchain and off-blockchain bitcoin transactions. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 43–60. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4_4

    Chapter  Google Scholar 

  43. Atlas, K.: The inevitability of privacy in lightning networks (2017). https://www.kristovatlas.com/the-inevitability-of-privacy-in-lightning-networks/

  44. Kalodner, H., Goldfeder, S., Chen, X., Weinberg, S.M., Felten, E.W.: Arbitrum: scalable, private smart contracts. In: USENIX Security Symposium, pp. 1353–1370 (2018)

    Google Scholar 

  45. Teutsch, J., Reitwiessner, C.: A scalable verification solution for blockchains. https://people.cs.uchicago.edu/~teutsch/papers/truebit.pdf

  46. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK: research perspectives and challenges for bitcoin and cryptocurrencies. In: Symposium on Security and Privacy, pp. 104–121. IEEE (2015)

    Google Scholar 

  47. Lind, J., Eyal, I., Kelbert, F., Naor, O., Pietzuch, P., Sirer, E.G.: Teechain: scalable blockchain payments using trusted execution environments. arXiv preprint arXiv:1707.05454 (2017)

  48. Lind, J., Eyal, I., Pietzuch, P., Sirer, E.G.: Teechan: payment channels using trusted execution environments. arXiv preprint arXiv:1612.07766 (2016)

  49. Das, P., et al.: FastKitten: practical smart contracts on bitcoin (2019)

    Google Scholar 

  50. Costan, V., Devadas, S.: Intel SGX explained. IACR Cryptology ePrint Archive 2016(086), 1–118 (2016)

    Google Scholar 

  51. Matetic, S., et al.: ROTE: rollback protection for trusted execution. In: USENIX Security Symposium, pp. 1289–1306 (2017)

    Google Scholar 

  52. Neudecker, T., Hartenstein, H.: Network layer aspects of permissionless blockchains. IEEE Commun. Surv. Tutor. 21, 838–857 (2018)

    Article  Google Scholar 

  53. Decker, C., Wattenhofer, R.: Information propagation in the bitcoin network. In: Conference on Peer-to-Peer Computing, pp. 1–10 (2013)

    Google Scholar 

  54. Klarman, U., Basu, S., Kuzmanovic, A., Sirer, E.G.: bloXroute: a scalable trustless blockchain distribution network (2018). https://bloxroute.com/wp-content/uploads/2018/03/bloXroute-whitepaper.pdf

  55. Gervais, A., Čapkun, S., Karame, G.O., Gruber, D.: On the privacy provisions of bloom filters in lightweight bitcoin clients. In: Computer Security Applications Conference, pp. 326–335 (2014)

    Google Scholar 

  56. Bitcoin fibre (2019). http://www.bitcoinfibre.org/

  57. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://bitcoin.org/bitcoin.pdf

  58. Sompolinsky, Y., Zohar, A.: Accelerating bitcoin’s transaction processing. fast money grows on trees, not chains. IACR Cryptology ePrint Archive 2013/881 (2013)

    Google Scholar 

  59. Lerner, S.D.: Decor+ hop: a scalable blockchain protocol. https://scalingbitcoin.org/papers/DECOR-HOP.pdf

  60. Sompolinsky, Y., Lewenberg, Y., Zohar, A.: SPECTRE: a fast and scalable cryptocurrency protocol. IACR Cryptology ePrint Archive 2016/1159 (2016)

    Google Scholar 

  61. Zhang, F., Eyal, I., Escriva, R., Juels, A., Van Renesse, R.: REM: resource-efficient mining for blockchains. In: USENIX Security Symposium, pp. 1427–1444 (2017)

    Google Scholar 

  62. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros Praos: an adaptively-secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_3

    Chapter  Google Scholar 

  63. Bentov, I., Pass, R., Shi, E.: Snow white: provably secure proofs of stake. IACR Cryptology ePrint Archive 2016/919 (2016)

    Google Scholar 

  64. Milutinovic, M., He, W., Wu, H., Kanwal, M.: Proof of luck: an efficient blockchain consensus protocol. In: Proceedings of the 1st Workshop on System Software for Trusted Execution, p. 2. ACM (2016)

    Google Scholar 

  65. Borge, M., Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Ford, B.: Proof-of-personhood: redemocratizing permissionless cryptocurrencies. In: 2017 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), pp. 23–26. IEEE (2017)

    Google Scholar 

  66. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Paper 151, 1–32 (2014)

    Google Scholar 

  67. Plasma cash: Plasma with much less per-user data checking (2018). https://ethresear.ch/t/plasma-cash-plasma-with-much-less-per-user-data-checking/1298

  68. McCorry, P., Bakshi, S., Bentov, I., Miller, A., Meiklejohn, S.: Pisa: arbitration outsourcing for state channels. IACR Cryptology ePrint Archive 2018/582 (2018)

    Google Scholar 

  69. Dryja, T.: Unlinkable outsourced channel monitoring (2016). https://scalingbitcoin.org/transcript/milan2016/unlinkable-outsourced-channel-monitoring

  70. Osuntokun, O.: Hardening lightning, harder, better, faster stronger (2015). https://cyber.stanford.edu/sites/g/files/sbiybj9936/f/hardening_lightning_updated.pdf

  71. Avarikioti, G., Laufenberg, F., Sliwinski, J., Wang, Y., Wattenhofer, R.: Towards secure and efficient payment channels. arXiv preprint arXiv:1811.12740 (2018)

  72. Avarikioti, G., Kogias, E.K., Wattenhofer, R.: Brick: asynchronous state channels. arXiv preprint arXiv:1905.11360 (2019)

  73. Khabbazian, M., Nadahalli, T., Wattenhofer, R.: Outpost: a responsive lightweight watchtower. In: Proceedings of the 1st ACM Conference on Advances in Financial Technologies, pp. 31–40. ACM (2019)

    Google Scholar 

  74. Avarikioti, G., Litos, O.S.T., Wattenhofer, R.: Cerberus channels: incentivizing watchtowers for bitcoin. Financial Cryptography and Data Security (FC) (2020)

    Google Scholar 

  75. Dziembowski, S., Faust, S., Hostáková, K.: General state channel networks. In: Conference on Computer and Communications Security, pp. 949–966. ACM (2018)

    Google Scholar 

  76. Joleman, J., Horne, L., Xuanji, L.: Counterfactual: generalized state channels (2018). https://l4.ventures/papers/statechannels.pdf

  77. Pedrosa, A.R., Potop-Butucaru, M., Tucci-Piergiovanni, S.: Lightning factories (2019)

    Google Scholar 

  78. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S.: Concurrency and privacy with payment-channel networks. In: Conference on Computer and Communications Security, CCS 2017, pp. 455–471. ACM, New York (2017). https://doi.org/10.1145/3133956.3134096

  79. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.: Anonymous multi-hop locks for blockchain scalability and interoperability. In: Network and Distributed System Security Symposium (2019)

    Google Scholar 

  80. Egger, C., Moreno-Sanchez, P., Maffei, M.: Atomic multi-channel updates with constant collateral in bitcoin-compatible payment-channel networks. In: CCS (2019)

    Google Scholar 

  81. Tairi, E., Moreno-Sanchez, P., Maffei, M.: A\({}^{\text{2}}\)l: anonymous atomic locks for scalability and interoperability in payment channel hubs. IACR Cryptology ePrint Archive 2019/589 (2019). https://eprint.iacr.org/2019/589

  82. Dziembowski, S., Eckey, L., Faust, S., Hesse, J., Hostáková, K.: Multi-party virtual state channels. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 625–656. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_21

    Chapter  Google Scholar 

  83. Avarikioti, G., Janssen, G., Wang, Y., Wattenhofer, R.: Payment network design with fees. In: Garcia-Alfaro, J., Herrera-Joancomartí, J., Livraga, G., Rios, R. (eds.) DPM/CBT -2018. LNCS, vol. 11025, pp. 76–84. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00305-0_6

    Chapter  Google Scholar 

  84. Brânzei, S., Segal-Halevi, E., Zohar, A.: How to charge lightning. arXiv preprint arXiv:1712.10222 (2017)

  85. Avarikioti, G., Laufenberg, F., Sliwinski, J., Wang, Y., Wattenhofer, R.: Incentivizing payment channel watchtowers (2018). https://scalingbitcoin.org/transcript/tokyo2018/incentivizing-payment-channel-watchtowers

  86. Di Stasi, G., Avallone, S., Canonico, R., Ventre, G.: Routing payments on the lightning network. In: 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 1161–1170. IEEE (2018)

    Google Scholar 

  87. Merkle, R.C.: A digital signature based on a conventional encryption function. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2_32

    Chapter  Google Scholar 

  88. Intel: Intel software guard extensions (Intel SGX) (2019). https://software.intel.com/en-us/sgx

  89. Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Čapkun, S., Sadeghi, A.R.: Software grand exposure:SGX cache attacks are practical. In: 11th USENIX Workshop on Offensive Technologies (WOOT 2017) (2017)

    Google Scholar 

  90. Bentov, I., et al.: Tesseract: Real-time cryptocurrency exchange using trusted hardware. IACR Cryptology ePrint Archive 2017/1153 (2017)

    Google Scholar 

  91. Matetic, S., Wüst, K., Schneider, M., Kostiainen, K., Karame, G., Čapkun, S.: Bite: bitcoin lightweight client privacy using trusted execution. IACR Cryptology ePrint Archive 2018/803 (2018)

    Google Scholar 

  92. Wüst, K., Matetic, S., Schneider, M., Miers, I., Kostiainen, K., Čapkun, S.: ZLiTE: lightweight clients for shielded Zcash transactions using trusted execution. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS, vol. 11598, pp. 179–198. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32101-7_12

    Chapter  Google Scholar 

  93. Karame, G.O., Androulaki, E., Roeschlin, M., Gervais, A., ÄŒapkun, S.: Misbehavior in bitcoin: a study of double-spending and accountability. ACM Trans. Inf. Syst. Secur. (TISSEC) 18(1), 2 (2015)

    Article  Google Scholar 

  94. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating user privacy in bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 34–51. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_4

    Chapter  Google Scholar 

  95. Meiklejohn, S., et al.: A fistful of bitcoins: characterizing payments among men with no names. In: Proceedings of the 2013 Conference on Internet Measurement Conference, pp. 127–140. ACM (2013)

    Google Scholar 

  96. Böhme, R., Christin, N., Edelman, B., Moore, T.: Bitcoin: economics, technology, and governance. J. Econ. Perspect. 29(2), 213–38 (2015)

    Article  Google Scholar 

  97. Möser, M., et al.: An empirical analysis of traceability in the Monero blockchain. Proc. Priv. Enhancing Technol. 2018(3), 143–163 (2018)

    Article  Google Scholar 

  98. Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In: Symposium on Security and Privacy, pp. 459–474. IEEE (2014)

    Google Scholar 

  99. Grin: minimal implementation of the mimblewimble protocol (2019). https://github.com/mimblewimble/grin

  100. Beam: Scalable confidential cryptocurrency. A mimblewimble implementation (2019). https://github.com/BeamMW/beam

  101. Courtois, N.T., Mercer, R.: Stealth address and key management techniques in blockchain systems. In: ICISSP, pp. 559–566 (2017)

    Google Scholar 

  102. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and constructions without random Oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_4

    Chapter  Google Scholar 

  103. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. J. Cryptol. 1(2), 77–94 (1988)

    Article  MathSciNet  Google Scholar 

  104. Kappos, G., Yousaf, H., Maller, M., Meiklejohn, S.: An empirical analysis of anonymity in Zcash. In: USENIX Security Symposium, pp. 463–477 (2018)

    Google Scholar 

  105. Hinteregger, A., Haslhofer, B.: An empirical analysis of Monero cross-chain traceability. CoRR abs/1812.02808 (2018). http://arxiv.org/abs/1812.02808

  106. Kumar, A., Fischer, C., Tople, S., Saxena, P.: A traceability analysis of Monero’s blockchain. In: ESORICS, pp. 153–173 (2017)

    Google Scholar 

  107. Biryukov, A., Feher, D.: Privacy and linkability of mining in Zcash. In: 2019 IEEE Conference on Communications and Network Security (CNS), pp. 118–123. IEEE (2019)

    Google Scholar 

  108. Herrera-Joancomartí, J., Navarro-Arribas, G., Ranchal-Pedrosa, A., Pérez-Solà, C., Garcia-Alfaro, J.: On the difficulty of hiding the balance of lightning network channels. Cryptology ePrint Archive, Report 2019/328 (2019). https://eprint.iacr.org/2019/328

  109. Moreno-Sanchez, P., Kate, A., Maffei, M., Pecina, K.: Privacy preserving payments in credit networks. In: Network and Distributed Security Symposium (2015)

    Google Scholar 

  110. Moreno-Sanchez, P., Zafar, M.B., Kate, A.: Listening to whispers of ripple: linking wallets and deanonymizing transactions in the ripple network. PoPETs 2016(4), 436–453 (2016). https://doi.org/10.1515/popets-2016-0049

    Article  Google Scholar 

  111. Moreno-Sanchez, P., Modi, N., Songhela, R., Kate, A., Fahmy, S.: Mind your credit: assessing the health of the ripple credit network. WWW 2018, pp. 329–338 (2018)

    Google Scholar 

  112. Wüst, K., Gervais, A.: Ethereum eclipse attacks. Technical report, ETH Zurich (2016)

    Google Scholar 

  113. Gervais, A., Ritzdorf, H., Karame, G.O., Čapkun, S.: Tampering with the delivery of blocks and transactions in bitcoin. In: Conference on Computer and Communications Security, pp. 692–705. ACM (2015)

    Google Scholar 

  114. Rohrer, E., Malliaris, J., Tschorsch, F.: Discharged payment channels: quantifying the lightning network’s resilience to topology-based attacks. CoRR abs/1904.10253 (2019). http://arxiv.org/abs/1904.10253

  115. Kumaresan, R., Bentov, I.: Amortizing secure computation with penalties. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS 2016, pp. 418–429. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2976749.2978424

  116. Kiayias, A., Litos, O.S.T.: A composable security treatment of the lightning network. Cryptology ePrint Archive, Report 2019/778 (2019). https://eprint.iacr.org/2019/778

  117. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero knowledge for a Von Neumann architecture. In: 23rd USENIX Security Symposium (USENIX Security 2014), pp. 781–796 (2014)

    Google Scholar 

  118. Buterin, V.: On-chain scaling to potentially 500 tx/sec through mass tx validation (2018). https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477

  119. ZmnSCPxj: (lightning-dev) an argument for single-asset lightning network (2018). https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-December/001752.html

Download references

Acknowledgments

The authors would like to thank Alexei Zamyatin and Sam Werner for their valuable feedback on earlier paper versions. This work has been partially supported by EPSRC Standard Research Studentship (DTP) (EP/R513052/1); by Chaincode Labs; by the Austrian Science Fund (FWF) through the Lisa Meitner program; by the Ethereum Foundation, Ethereum Community Fund and Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis Gudgeon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 International Financial Cryptography Association

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A. (2020). SoK: Layer-Two Blockchain Protocols. In: Bonneau, J., Heninger, N. (eds) Financial Cryptography and Data Security. FC 2020. Lecture Notes in Computer Science(), vol 12059. Springer, Cham. https://doi.org/10.1007/978-3-030-51280-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51280-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51279-8

  • Online ISBN: 978-3-030-51280-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics