Skip to main content

Prospects of Biochar in Alkaline Soils to Mitigate Climate Change

  • Chapter
  • First Online:
Environment, Climate, Plant and Vegetation Growth

Abstract

Climate change is one of the most threatening issues persisting on the planet earth; challenging the existence of life due to greenhouse gases emission including atmospheric carbon dioxide concentration. Additionally, unpredicted shift in climatic indicators may hinder the sustainability of life. It is, thus, imperative to combat these harsh climatic variations by controlling emission of greenhouse gases especially carbon dioxide. Soils serve as source and sink for greenhouse gases including carbon dioxide, methane and nitrous oxide. Therefore, the accurate quantification of storage and emission capacities are needed to obtain reliable global budgets that are necessary for land-use management, global change and for climate research. The inhabitants of the developing countries have suffered and will suffer greatly from the consequences of climatic uncertainty as the rain patterns will observe a huge shift that will encourage the floods and water scarcity. To cope with the challenges of climatic changes and emission of greenhouse gases, effective and practical techniques are required for the storage within the soil. An efficient and cost-effective method for this purpose could be the pyrolysis of biomass in the absence or limited oxygen and controlled conditions of temperature and pressure to a carbon-rich compound called as biochar since biochar has been characterized as a stable and long-lasting soil amendment possessing a wide potential of increasing agricultural production, carbon sequestration, and environmental quality. Researchers have been explored and investigated its applications mostly in acidic soils but data regarding its potential benefits in alkaline soils is lacking. This chapter will provide an insight into latest scientific research of biochar as a viable option for combating climate change hazardous in alkaline arid soils. The characteristics of biochar responsible achieving these benefits will also be discussed. Additionally, modification techniques of biochar suiting alkaline soil will be the part of this chapter since the use of biochar as soil amendment is normally not recommended for alkaline soils due to its alkaline nature. However, as a cost-effective soil amendment, especially for climate change mitigation, needs detailed discussion to highlight all aspects of biochar could be exploited for alkaline soils being a carbon-rich product has potential to improve total organic carbon in soil along with its other agronomic uses for soil improvement in terms of soil CEC, pH, bulk density, water and nutrient holding capacity, microbial activity enhancer, remediation of polluted and degraded soil besides its carbon sequestration potential for mitigation of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad M, Lee SS, Dou X, Mohan D, Sung J, Yang JE, Ok YS (2012) Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118:536–544

    Article  CAS  PubMed  Google Scholar 

  • Ameloot N, Maenhout P, De Neve S, Sleutel S (2016) Biochar-induced N2O emission reductions after field incorporation in a loam soil. Geoderma 267:10–16

    Article  CAS  Google Scholar 

  • Beauchamp EG (1997) Nitrous oxide emission from agricultural soils. Can J Soil Sci 77:113–123

    Article  CAS  Google Scholar 

  • Bernstein L, Bosch P, Canziani O, Chen Z, Christ R, Davidson O (2007) Climate change 2007: synthesis report, Summary for policymakers. IPCC, Geneva, p 22

    Google Scholar 

  • Bird MI, McBeath AV, Ascough PL, Levchenko VA, Wurster CM, Munksgaard NC, Smernik RJ, Williams A (2017) Loss and gain of carbon during char degradation. Soil Biol Biochem 106:80–89

    Article  CAS  Google Scholar 

  • Borchard N, Schirrmann M, Cayuela M, Kammann C, Wrage-Mönnig N, Estavillo JM, Fuertes-Mendizábal T, Sigua G, Spokas K, Ippolito JA, Novak J (2019) Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: a meta-analysis. Sci Total Environ 651:2354–2364

    Article  CAS  PubMed  Google Scholar 

  • Brady NC, Weil RR (2010) Elements of the nature and properties of soils. Pearson Prentice Hall, New York

    Google Scholar 

  • Bruun EW, Müller Stöver D, Ambus P, Hauggaard Nielsen H (2011) Application of biochar to soil and N2O emissions: potential effects of blending fast pyrolysis biochar with anaerobically digested slurry. Eur J Soil Sci 62(4):581–589

    Article  CAS  Google Scholar 

  • Cao X, Harris W (2010) Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour Technol 101:5222–5228

    Article  CAS  PubMed  Google Scholar 

  • Case SDC, McNamara NP, Reay DS, Stott AW, Grant HK, Whitaker J (2015) Biochar suppresses N2O emissions while maintaining N availability in a sandy loam soil. Soil Biol Biochem 81:178–185

    Article  CAS  Google Scholar 

  • Cayuela ML, Van Zwieten L, Singh BP, Jeffery S, Roig A, Sánchez-Monedero MA (2014) Biochar’s role in mitigating soil nitrous oxide emissions: a review and metaanalysis. Agric Ecosyst Environ 191:5–16

    Article  CAS  Google Scholar 

  • Cely P, Tarquis AM, Pazferreiro J, Méndez A, Gascó G (2014) Factors driving the carbon mineralization priming effect in a sandy loam soil amended with different types of biochar. Solid Earth 6:1748–1761

    Google Scholar 

  • Chan KY, Xu Z (2009) Biochar: nutrient properties and their enhancement. In: Biochar for management: science and technology. Earthscan, London/Sterling, pp 67–68

    Google Scholar 

  • Cheng Y, Cai Z, Chang SX, Wang J, Zhang J (2012) Wheat straw and its biochar have contrasting effects on inorganic N retention and N2O production in a cultivated Black Chernozem. Biol Fertil Soils 48:941–946

    Article  CAS  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE (2007) Coupling between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, MMB T et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 499–587

    Google Scholar 

  • Fahad S, Bano A (2012) Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. Pak J Bot 44:1433–1438

    Google Scholar 

  • Fahad S, Chen Y, Saud S, Wang K, Xiong D, Chen C, Wu C, Shah F, Nie L, Huang J (2013) Ultraviolet radiation effect on photosynthetic pigments, biochemical attributes, antioxidant enzyme activity and hormonal contents of wheat. J Food Agric Environ 11(3&4):1635–1641

    CAS  Google Scholar 

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen Y, Wu C, Tabassum MA, Chun MX, Afzal M, Jan A, Jan MT, Huang J (2014a) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22(7):4907–4921. https://doi.org/10.1007/s11356-014-3754-2

    Article  Google Scholar 

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N, Faiq M, Khan MR, Tareen AK, Khan A, Ullah A, Ullah N, Huang J (2014b) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75(2):391–404. https://doi.org/10.1007/s10725-014-0013-y

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Saud S, Tanveer M, Bajwa AA, Hassan S, Shah AN, Ullah A, Wu C, Khan FA, Shah F, Ullah S, Chen Y, Huang J (2015a) A biochar application protects rice pollen from high-temperature stress. Plant Physiol Biochem 96:281–287

    Article  CAS  PubMed  Google Scholar 

  • Fahad S, Nie L, Chen Y, Wu C, Xiong D, Saud S, Hongyan L, Cui K, Huang J (2015b) Crop plant hormones and environmental stress. Sustain Agric Rev 15:371–400

    Article  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Chauhan BS, Khan F et al (2016a) Responses of rapid viscoanalyzer profile and other rice grain qualities to exogenously applied plant growth regulators under high day and high night temperatures. PLoS One 11(7):e0159590. https://doi.org/10.1371/journal.pone.0159590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Hussain S, Saud S, Khan F, Hassan S Jr, Amanullah, Nasim W, Arif M, Wang F, Huang J (2016b) Exogenously applied plant growth regulators affect heat-stressed rice pollens. J Agron Crop Sci 202:139–150

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Ihsan Z, Shah AN, Wu C, Yousaf M, Nasim W, Alharby H, Alghabari F, Huang J (2016c) Exogenously applied plant growth regulators enhance the morphophysiological growth and yield of rice under high temperature. Front Plant Sci 7:1250. https://doi.org/10.3389/fpls.2016.01250

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Tanveer M, Ihsan MZ, Shah AN, Ullah A, Nasrullah KF, Ullah S, Alharby H, Nasim W, Wu C, Huang J (2016d) A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiol Biochem 103:191–198

    Article  CAS  PubMed  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147. https://doi.org/10.3389/fpls.2017.01147

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Muhammad ZI, Abdul K, Ihsanullah D, Saud S, Saleh A, Wajid N, Muhammad A, Imtiaz AK, Chao W, Depeng W, Jianliang H (2018) Consequences of high temperature under changing climate optima for rice pollen characteristics-concepts and perspectives. Arch Agron Soil Sci. https://doi.org/10.1080/03650340.2018.1443213

  • Fahad S, Rehman A, Shahzad B, Tanveer M, Saud S, Kamran M, Ihtisham M, Khan SU, Turan V, Rahman MHU (2019a) Rice responses and tolerance to metal/metalloid toxicity. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas JK (eds) Advances in rice research for abiotic stress tolerance. Woodhead Publ Ltd, Cambridge, pp 299–312

    Chapter  Google Scholar 

  • Fahad S, Adnan M, Hassan S, Saud S, Hussain S, Wu C, Wang D, Hakeem KR, Alharby HF, Turan V, Khan MA, Huang J (2019b) Rice responses and tolerance to high temperature. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas JK (eds) Advances in rice research for abiotic stress tolerance. Woodhead Publ Ltd, Cambridge, pp 201–224

    Chapter  Google Scholar 

  • FAO (Food and Agricultural Organization) (2002) World agriculture towards 2015/2030. An FAO perspective. FAO, Rome

    Google Scholar 

  • Feng Y, Xu Y, Yu Y, Xie Z, Lin X (2012) Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biol Biochem 46:80–88

    Article  CAS  Google Scholar 

  • Fidel RB, Laird DA, Parkin TB (2019) Effect of biochar on soil greenhouse gas emissions at the laboratory and field scales. Soil Syst 3:8. https://doi.org/10.3390/soilsystems3010008

    Article  CAS  Google Scholar 

  • Guo J, Xu WS, Chen YL, Lua AC (2005) Adsorption NH3 onto activated carbon prepared from palm shells impregnated with H2SO4. J Colloid Interface Sci 281:285–290

    Article  CAS  PubMed  Google Scholar 

  • Hagner M, Kemppainen R, Jauhiainen L, Tiilikkala K, Setälä H (2016) The effects of birch (Betula spp.) biochar and pyrolysis temperature on soil properties and plant growth. Soil Tillage Res 163:224–234

    Article  Google Scholar 

  • Huo L, Pang HC, Zhao YG, Wang J, Lu C, Li YY (2017) Buried straw layer plus plastic mulching improves soil organic carbon fractions in an arid saline soil from Northwest China. Soil Tillage Res 165:286–293

    Article  Google Scholar 

  • Inyang M, Gao B, Pullammanappallil P, Ding W, Zimmerman AR (2010) Biochar from anaerobically digested sugarcane bagasse. Bioresour Technol 101(22):8868–8872

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2013) In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York, pp 1132–1535

    Google Scholar 

  • IPCC (2014a) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. (80 pp, 4.2 M, About PDF) EXIT [Core Writing Team, RK Pachauri and LA Meyer (eds)]. IPCC, Geneva, Switzerland, 151 pp

    Google Scholar 

  • IPCC (2014b) In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change, Cambridge/New York, p 1132

    Google Scholar 

  • Ippolito JA, Laird DA, Busscher WJ (2012) Environmental benefits of biochar. J Environ Qual 41:973–989

    Article  PubMed  CAS  Google Scholar 

  • Ippolito JA, Ducey TF, Cantrell KB, Novak JM, Lentz RD (2016) Designer, acidic biochar influences calcareous soil characteristics. Chemosphere 142:184–191

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Xu R-K, Jiang T-Y, Li Z (2012) Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J Hazard Mater 229–230:145–150

    Article  PubMed  CAS  Google Scholar 

  • Kloss S, Zehetner F, Dellantonio A, Hamid R, Ottner F, Liedtke V, Schwanninger M, Gerzabek MH, Soja G (2012) Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J Environ Qual 41:990–1000

    Article  CAS  PubMed  Google Scholar 

  • Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5:381–387

    Article  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems – a review. Mitig Adapt Strateg Glob Chang 11(2):403–427

    Article  Google Scholar 

  • Lehmann J, Amonette JE, Roberts K (2010) Role of biochar in mitigation of climate change. In: Handbook of climate change and agroecosystems. Joint Publication with the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America

    Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota–a review. Soil Biol Biochem 43(9):1812–1836

    Article  CAS  Google Scholar 

  • Leng L, Xua X, Wei L, Fana L, Huang H, Li J, Lu Q, Li J, Zhou W (2019) Biochar stability assessment by incubation and modelling: methods, drawbacks and recommendations. Sci Total Environ 664:11–23. https://doi.org/10.1016/j.scitotenv.2019.01.298

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Shen G, Sun M, Cao X, Shang G, Chen P (2014) Effect of biochar on nitrous oxide emission and its potential mechanisms. J Air Waste Manag Assoc 64:894–902. https://doi.org/10.1080/10962247.2014.899937

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Durenkamp M, Nobili MD, Lin Q, Brookes PC (2011) Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol Biochem 43:2304–2314

    Article  CAS  Google Scholar 

  • Marris E (2006) Putting the carbon back: black is the new green. Nature 442(7103):624–626

    Article  CAS  PubMed  Google Scholar 

  • Mavi MS, Marschner P, Chittleborough DJ, Cox JW, Sanderman J (2012) Salinity and sodicity affect soil respiration and dissolved organic matter dynamics differentially in soils varying in texture. Soil Biol Biochem 45:8–13

    Article  CAS  Google Scholar 

  • Mohawesh O, Coolong T, Aliedeh M, Qaraleh S (2018) Greenhouse evaluation of biochar to enhance soil properties and plant growth performance under arid environment. Bulgarian J Agr Sci 24(6):1012–1019

    Google Scholar 

  • Nguyen BT, Lehmann J, Kinyangi J, Smernik R, Riha SJ, Engelhard MH (2008) Long-term black carbon dynamics in cultivated soil. Biogeochemistry 89(3):295–308

    Article  CAS  Google Scholar 

  • Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW, Niandou MAS (2009) Impact of biochar amendment on fertility of a Southeastern coastal plain soil. Soil Sci 174(2):105–112

    Article  CAS  Google Scholar 

  • O’Brien SL, Jastrow JD, Grimley DA, Gonzalez-Meler MA (2015) Edaphic controls on soil organic carbon stocks in restored grasslands. Geoderma 251:117–123. https://doi.org/10.1016/j.geoderma.2015.03.023

    Article  CAS  Google Scholar 

  • Oades JM (1988) The retention of organic-matter in soils. Biogeochemistry 5(1):35–70. https://doi.org/10.1007/BF02180317

    Article  CAS  Google Scholar 

  • Paustian K, Lehmann J, Ogle S, Reay D, Robertson GP, Smith P (2016) Climate-smart soils. Nature 532:49–57

    Article  CAS  PubMed  Google Scholar 

  • Pratiwi EPA, Shinogi Y (2016) Rice husk biochar application to paddy soil and its effects on soil physical properties, plant growth, and methane emission. Paddy Water Environ 14:521–532

    Article  Google Scholar 

  • Qian K, Kumar A, Zhang H, Bellmer D, Huhnke R (2015) Recent advances in utilization of biochar. Renew Sust Energ Rev 42:1055–1064

    Article  CAS  Google Scholar 

  • Qu ZY, Gao LH, Li CJ, Zhang N (2016) Impacts of straw biochar on emission of greenhouse gas in maize field. Trans Chin Soc Agric Mach 47:111–118. (In Chinese)

    Google Scholar 

  • Rasul F, Gull U, Rahman MH, Hussain Q, Chaudhary HJ, Matloob A, Shahzad S, Iqbal S, Shelia V, Masood S, Bajwa HM (2016) Biochar an emerging technology for climate change mitigation. J Environ Agric Sci 9:37–43

    Google Scholar 

  • Rodrigues CC, Moraes D, Nóbrega SW, Bardoza MG (2007) Ammonia adsorption in a fixed bed of activated carbon. Bioresour Technol 98:886–891

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Zhu L, Cheng H, Yue S, Li S (2017) Effects of biochar application on CO2 emissions from a cultivated soil under semiarid climate conditions in Northwest China. Sustainability 9:1482

    Article  CAS  Google Scholar 

  • Singh BP, Cowie AL (2014) Long-term influence of biochar on native organic carbon mineralization in a low-carbon clayey soil. Sci Rep 4:3687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh BP, Hatton BJ, Singh B, Cowie AL, Kathuria A (2010) Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J Environ Qual 39(4):1224–1235

    Article  CAS  PubMed  Google Scholar 

  • Spokas KA, Reicosky DC (2009) Impacts of sixteen different biochars on soil greenhouse gas production. Ann Environ Sci 3:179–3193

    CAS  Google Scholar 

  • Stavi I, Lal R (2013) Agroforestry and biochar to offset climate change: a review. Agron Sustain Dev 33:81–96

    Article  Google Scholar 

  • Tan X-F, Liu S-B, Liu Y-G, Gu Y-L, Zeng G-M, Hu X-J, Wang X, Liu S-H, Jiang L-H (2017) Biochar as potential sustainable precursors for activated carbon production: multiple applications in environmental protection and energy storage. Bioresour Technol 227:359–372

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Clark M (2014) Global diets link environmental sustainability and human health. Nature 515(7528):518–522

    Article  CAS  PubMed  Google Scholar 

  • Tripathi M, Sahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sust Energ Rev 55:467–481

    Article  CAS  Google Scholar 

  • Uusitalo R, Turtola E, Kaupilla T, Lilja T (2001) Particulate phosphorus and sediments in surface runoff and drain flow from clayey soils. J Environ Qual 30:589–595

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang S (2019) Preparation, modification and environmental application of biochar: a review. J Clean Prod:227. https://doi.org/10.1016/j.jclepro.2019.04.282

  • Wang Z, Li Y, Chang S, Zhang J, Jiang P, Zhou G, Shen Z (2014) Contrasting effects of bamboo leaf and its biochar on soil CO2 efflux and labile organic carbon in an intensively managed Chinese chestnut plantation. Biol Fertil Soils 50:1109–1119

    Article  CAS  Google Scholar 

  • Wang J, Xiong Z, Kuzyakov Y (2016) Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy 8(3):512–523

    Article  CAS  Google Scholar 

  • Wang B, Gaob B, Fangb J (2017) Recent advances in engineered biochar productions and applications. Crit Rev Environ Sci Technol:1–50. https://doi.org/10.1080/10643389.2017.1418580

  • Wong VNL, Dalal RC, Greene RSB (2008) Salinity and sodicity effects on respiration and microbial biomass of soil. Biol Fertil Soils 44:943–953

    Article  Google Scholar 

  • Woolf D (2008) Biochar as a soil amendment: a review of the environmental implications. Organic Eprints 13268

    Google Scholar 

  • Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1:56

    Article  PubMed  CAS  Google Scholar 

  • Xie T, Reddy KR, Wang C, Yargicoglu E, Spokas K (2015) Characteristics and applications of biochar for environmental remediation: a review. Crit Rev Environ Sci Technol 45:939–969

    Article  CAS  Google Scholar 

  • Yadav RK, Yadav MR, Kumar R, Parihar CM, Yadav N, Bajiya R, Ram H, Meena RK, Yadav DK, Yadav B (2017) Role of biochar in mitigation of climate change through carbon sequestration. Int J Curr Microbiol App Sci 6(4):859–866

    Article  CAS  Google Scholar 

  • Zhang A, Cui L, Pan G, Li L, Hussain Q, Zhang X, Crowley D (2010) Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric Ecosyst Environ 139(4):469–475. https://doi.org/10.1016/j.agee.2010.09.003

    Article  CAS  Google Scholar 

  • Zhang QZ, Dijkstra FA, Liu XR, Wang YD, Huang J, Lu N (2014) Effects of biochar on soil microbial biomass after four years of consecutive application in the North China plain. PLoS One 9(7):e102062. https://doi.org/10.1371/journal.pone.0102062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Yuan S, Hu N, Lou Y, Wang S (2015) Predicting soil fauna effect on plant litter decomposition by using boosted regression trees. Soil Biol Biochem 82:81–86

    Article  CAS  Google Scholar 

  • Zhang R-H, Li Z-G, Liu X-D, Wang B-C, Zhou G-L, Huang X-X, Lin C-F, Zhang X, Gao B, Creamer AE, Cao C, Li Y (2017) Adsorption of VOCs onto engineered carbon materials: a review. J Hazard Mater 338:102–123

    Article  CAS  PubMed  Google Scholar 

  • Zhu B, Yi LX, Hu YG, Zeng ZH, Tang HM, Xiao XP, Yang GL (2011) Effects of ryegrass incorporation on CH4 and N2O emission from double rice paddy soil. Trans CSAE 27:241–245. (In Chinese)

    Google Scholar 

  • Zimmerman AR, Gao B, Ahn MY (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem 43:1169–1179

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qaiser Hussain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rashid, M. et al. (2020). Prospects of Biochar in Alkaline Soils to Mitigate Climate Change. In: Fahad, S., et al. Environment, Climate, Plant and Vegetation Growth. Springer, Cham. https://doi.org/10.1007/978-3-030-49732-3_7

Download citation

Publish with us

Policies and ethics