Skip to main content

The Immune System and Pathogenesis of Melanoma and Non-melanoma Skin Cancer

  • Chapter
  • First Online:
Sunlight, Vitamin D and Skin Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1268))

Abstract

Tumor development is the result of genetic derangement and the inability to prevent unfettered proliferation. Genetic derangements leading to tumorigenesis are variable, but the immune system plays a critical role in tumor development, prevention, and production. In this chapter, we will discuss the importance of the immune system as it relates to the development of skin cancer—both melanoma and non-melanoma skin cancers (NMSC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richmond JM, Harris JE. Immunology and skin in health and disease. Cold Spring Harb Perspect Med. 2014;4(12):a015339. https://doi.org/10.1101/cshperspect.a015339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hegde UP, Chakraborty N, Kerr P, Grant-Kels JM. Melanoma in the elderly patient: relevance of the aging immune system. Clin Dermatol. 2009;27(6):537–44. https://doi.org/10.1016/j.clindermatol.2008.09.012.

    Article  PubMed  Google Scholar 

  3. Gerlini G, Romagnoli P, Pimpinelli N. Skin cancer and immunosuppression. Crit Rev Oncol Hematol. 2005;56(1):127–36. https://doi.org/10.1016/j.critrevonc.2004.11.011.

    Article  PubMed  Google Scholar 

  4. Dayan N, Wertz PW. Innate immune system of the skin and oral mucosa. New York: Wiley; 2011.

    Google Scholar 

  5. Domingo DS, Baron ED. Melanoma and nonmelanoma skin cancers and the immune system. Adv Exp Med Biol. 2008;624:187–202. https://doi.org/10.1007/978-0-387-77574-6_15.

    Article  PubMed  Google Scholar 

  6. Bacci S, Alard P, Streilein JW. Evidence that ultraviolet B radiation transiently inhibits emigration of Langerhans cells from exposed epidermis, thwarting contact hypersensitivity induction. Eur J Immunol. 2001;31(12):3588–94. https://doi.org/10.1002/1521-4141(200112)31:12<3588::AID-IMMU3588gt;3.0.CO;2-C.

    Article  CAS  PubMed  Google Scholar 

  7. Pettersen JS, Fuentes-Duculan J, Suárez-Fariñas M, Pierson KC, Pitts-Kiefer A, Fan L, et al. Tumor-associated macrophages in the cutaneous SCC microenvironment are heterogeneously activated J Invest Dermatol. 2011; 131(6): 1322–1330. https://doi.org/10.103/jid.2011.9

    Google Scholar 

  8. Kang K, Gilliam AC, Chen G, Tootell E, Cooper KD. In human skin, UVB initiates early induction of IL-10 over IL-12 preferentially in the expanding dermal monocytic/macrophagic population. J Invest Dermatol. 1998;111(1):31–8.

    CAS  PubMed  Google Scholar 

  9. Tjiu JW, Chen JS, Shun CT, Lin SJ, Liao YH, Chu CY, et al. Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase-2 induction. J Invest Dermatol. 2009;129(4):1016–25. https://doi.org/10.1038/jid.2008.310.

    Article  CAS  PubMed  Google Scholar 

  10. Kaporis HG, Guttman-Yassky E, Lowes MA, Haider AS, Fuentes-Duculan J, Darabi K, et al. Human basal cell carcinoma is associated with Foxp3+ T cells in a Th2 dominant microenvironment. J Invest Dermatol. 2007;127(10):2391–8. https://doi.org/10.1038/sj.jid.5700884.

    Article  CAS  PubMed  Google Scholar 

  11. Bast RC Jr, Croce CM, Hait WN, Hong WK, Kufe DW, Piccart-Gebart M, et al. Holland-Frei cancer medicine. 9th ed. Hoboken: Wiley; 2017.

    Google Scholar 

  12. Otley CC. Immunosuppression and skin cancer: pathogenetic insights, therapeutic challenges, and opportunities for innovation. Arch Dermatol. 2002;138(6):827–8.

    PubMed  Google Scholar 

  13. Hill LL, Ouhtit A, Loughlin SM, Kripke ML, Ananthaswamy HN, Owen-Schaub LB. Fas ligand: a sensor for DNA damage critical in skin cancer etiology. Science. 1999;285(5429):898–900.

    CAS  PubMed  Google Scholar 

  14. Rangwala S, Tsai KY. Roles of the immune system in skin cancer. Br J Dermatol. 2011;165(5):953–65. https://doi.org/10.1111/j.1365-2133.2011.10507.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol. 2002;23(9):445–9.

    CAS  PubMed  Google Scholar 

  16. Soehnge H, Ouhtit A, Ananthaswamy ON. Mechanisms of induction of skin cancer by UV radiation. Front Biosci. 1997;2:d538–51.

    CAS  PubMed  Google Scholar 

  17. Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353(2):2135–47. https://doi.org/10.1056/NEJMoa050092.

    Article  CAS  PubMed  Google Scholar 

  18. Curtin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 2006;24(26):4340–6. https://doi.org/10.1200/JCO.2006.06.2984.

    Article  CAS  PubMed  Google Scholar 

  19. Si L, Kong Y, Xu X, Flaherty KT, Sheng X, Cui C, et al. Prevalence of BRAF V600E mutation in Chinese melanoma patients: large scale analysis of BRAF and NRAS mutations in a 432-case cohort. Eur J Cancer. 2012;48(1):94–100. https://doi.org/10.1016/j.ejca.2011.06.056.

    Article  CAS  PubMed  Google Scholar 

  20. Kong Y, Si L, Zhu Y, Xu X, Corless CL, Flaherty KT, et al. Large-scale analysis of KIT aberrations in Chinese patients with melanoma. Clin Cancer Res. 2011;17(7):1684–91. https://doi.org/10.1158/1078-0432.CCR-10-2346.

    Article  CAS  PubMed  Google Scholar 

  21. Menzies AM, Haydu LE, Visintin L, Carlino MS, Howle JR, Thompson JF, et al. Distinguishing clinicopathologic features of patients with V600E and V600K BRAF-mutant metastatic melanoma. Clin Cancer Res. 2012;18(12):3242–9. https://doi.org/10.1158/1078-0432.CCR-12-0052.

    Article  CAS  PubMed  Google Scholar 

  22. Handolias D, Salemi R, Murray W, Tan A, Liu W, Viros A, et al. Mutations in KIT occur at low frequency in melanomas arising from anatomical sites associated with chronic and intermittent sun exposure. Pigment Cell Melanoma Res. 2010;23(2):210–5. https://doi.org/10.1111/j.1755-148X.2010.00671.x.

    Article  CAS  PubMed  Google Scholar 

  23. Narayanan DL, Saladi RN, Fox JL. Ultraviolet radiation and skin cancer. Int J Dermatol. 2010;49(9):978–86. https://doi.org/10.1111/j.1365-4632.2010.04474.x.

    Article  PubMed  Google Scholar 

  24. Ulrich C, Schmook T, Sachse MM, Sterry W, Stockfleth E. Comparative epidemiology and pathogenic factors for nonmelanoma skin cancer in organ transplant patients. Dermatol Surg. 2004;30(4 Pt 2):622–7. https://doi.org/10.1111/j.1524-4725.2004.30147.x.

    Article  PubMed  Google Scholar 

  25. Laing ME, Kay E, Conlon P, Murphy GM. Genetic factors associated with skin cancer in renal transplant patients. Photodermatol Photoimmunol Photomed. 2007;23(2–3):62–7. https://doi.org/10.1111/j.1600-0781.2007.00282.x.

    Article  CAS  PubMed  Google Scholar 

  26. Halliday GM, Byrne SN, Damian DL. Ultraviolet A radiation: its role in immunosuppression and carcinogenesis. Semin Cutan Med Surg. 2011;30(4):214–21. https://doi.org/10.1016/j.sder.2011.08.002.

    Article  CAS  PubMed  Google Scholar 

  27. Ullrich SE. Mechanisms underlying UV-induced immune suppression. Mutat Res. 2005;571(1–2):185–205. https://doi.org/10.1016/j.mrfmmm.2004.06.059.

    Article  CAS  PubMed  Google Scholar 

  28. Hart PH, Gorman S, Finlay-Jones JJ. Modulation of the immune system by UV radiation: more than just the effects of vitamin D? Nat Rev Immunol. 2011;11(9):584–96. https://doi.org/10.1038/nri3045.

    Article  CAS  PubMed  Google Scholar 

  29. Norval M, Halliday GM. The consequences of UV-induced immunosuppression for human health. Photochem Photobiol. 2011;87(5):965–77. https://doi.org/10.1111/j.1751-1097.2011.00969.x.

    Article  CAS  PubMed  Google Scholar 

  30. Schwarz T, Schwarz A. Molecular mechanisms of ultraviolet radiation-induced immunosuppression. Eur J Cell Biol. 2011;90(6–7):560–4. https://doi.org/10.1016/j.ejcb.2010.09.011.

    Article  CAS  PubMed  Google Scholar 

  31. Baron E. Chapter 6 The immune system and nonmelanoma skin cancer. In: Reichrath J, editor. Molecular mechanisms of basal cell and squamous cell carcinomas, Medical intelligence unit series. 1st ed. New York: Springer; 2006.

    Google Scholar 

  32. Ullrich SE. Sunlight and skin cancer: lessons from the immune system. Mol Carcinog. 2007;46(8):629–33. https://doi.org/10.1002/mc.20328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nasti TH, Iqbal O, Tamimi IA, Geise JT, Katiyar SK, Yusuf N. Differential roles of T-cell subsets in regulation of ultraviolet radiation induced cutaneous photocarcinogenesis. Photochem Photobiol. 2011;87(2):387–98. https://doi.org/10.1111/j.1751-1097.2010.00859.x.

    Article  CAS  PubMed  Google Scholar 

  34. Ullrich SE, Byrne SN. The immunologic revolution: photoimmunology. J Invest Dermatol. 2012;132(3 Pt 2):896–905. https://doi.org/10.1038/jid.2011.405.

    Article  CAS  PubMed  Google Scholar 

  35. Bennett MF, Robinson MK, Baron ED, Cooper KD. Skin immune systems and inflammation: protector of the skin or promoter of aging? J Investig Dermatol Symp Proc. 2008;13(1):15–9. https://doi.org/10.1038/jidsymp.2008.3.

    Article  CAS  PubMed  Google Scholar 

  36. Haass NK, Herlyn M. Normal human melanocyte homeostasis as a paradigm for understanding melanoma. J Investig Dermatol Symp Proc. 2005;10(2):153–63. https://doi.org/10.1111/j.1087-0024.2005.200407.x.

    Article  CAS  PubMed  Google Scholar 

  37. Zaidi MR, Davis S, Noonan FP, Graff-Cherry C, Hawley TS, Walker RL, et al. Interferon-γ links ultraviolet radiation to melanomagenesis in mice. Nature. 2011;469(7331):548–53. https://doi.org/10.1038/nature09666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Margolin K. Introduction to the role of the immune system in melanoma. Hematol Oncol Clin North Am. 2014;28(3):537–58. https://doi.org/10.1016/j.hoc.2014.02.005.

    Article  PubMed  Google Scholar 

  39. Boni A, Cogdill AP, Dang P, Udayakumar D, Njauw CN, Sloss CM, et al. Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res. 2010;70(13):5213–9. https://doi.org/10.1158/0008-5472.CAN-10-0118.

    Article  CAS  PubMed  Google Scholar 

  40. Sumimoto H, Imabayashi F, Iwata T, Kawakami Y. The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med. 2006;203(7):1651–6. https://doi.org/10.1084/jem.20051848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Frederick DT, Piris A, Cogdill AP, Cooper ZA, Lezcano C, Ferrone CR, Mitra D, et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res. 2013;19(5):1225–31. https://doi.org/10.1158/1078-0432.CCR-12-1630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu C, Peng W, Xu C, Lou Y, Zhang M, Wargo JA, et al. BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice. Clin Cancer Res. 2013;19(2):393–403. https://doi.org/10.1158/1078-0432.CCR-12-1626.

    Article  CAS  PubMed  Google Scholar 

  43. Koya RC, Mok S, Otte N, Blacketor KJ, Comin-Anduix B, Tumeh PC, et al. BRAF inhibitor vemurafenib improves the antitumor activity of adoptive cell immunotherapy. Cancer Res. 2012;72(16):3928–37. https://doi.org/10.1158/0008-5472.CAN-11-2837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cooper ZA, Frederick DT, Juneja VR, Sullivan RJ, Lawrence DP, Piris A, et al. BRAF inhibition is associated with increased clonality in tumor-infiltrating lymphocytes. Onco Targets Ther. 2013;2(10):e26615. https://doi.org/10.4161/onci.26615.

    Article  Google Scholar 

  45. Wilmott JS, Scolyer RA, Long GV, Hersey P. Combined targeted therapy and immunotherapy in the treatment of advanced melanoma. Onco Targets Ther. 2012;1(6):997–9. https://doi.org/10.4161/onci.19865.

    Article  Google Scholar 

  46. Bald T, Quast T, Landsberg J, Rogava M, Glodde N, Lopez-Ramos D, et al. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature. 2014;507(7490):109–13. https://doi.org/10.1038/nature13111.

    Article  CAS  PubMed  Google Scholar 

  47. Barnhill RL, Lugassy C. Angiotropic malignant melanoma and extravascular migratory metastasis: description of 36 cases with emphasis on a new mechanism of tumour spread. Pathology. 2004;36(5):485–90. https://doi.org/10.1080/00313020412331282708.

    Article  PubMed  Google Scholar 

  48. Penn I. Post-transplant malignancy: the role of immunosuppression. Drug Saf. 2000;23(2):101–13. https://doi.org/10.2165/00002018-200023020-00002.

    Article  CAS  PubMed  Google Scholar 

  49. Ulrich C, Kanitakis J, Stockfleth E, Euvrard S. Skin cancer in organ transplant recipients–where do we stand today? Am J Transplant. 2008;8(11):2192–8. https://doi.org/10.1111/j.1600-6143.2008.02386.x.

    Article  CAS  PubMed  Google Scholar 

  50. Otley CC, Coldiron BM, Stasko T, Goldman GD. Decreased skin cancer after cessation of therapy with transplant-associated immunosuppressants. Arch Dermatol. 2001;137(4):459–63.

    CAS  PubMed  Google Scholar 

  51. Otley CC, Maragh SL. Reduction of immunosuppression for transplant-associated skin cancer: rationale and evidence of efficacy. Dermatol Surg. 2005;31(2):163–8.

    CAS  PubMed  Google Scholar 

  52. O’Reilly Zwald F, Brown M. Skin cancer in solid organ transplant recipients: advances in therapy and management: part I. Epidemiology of skin cancer in solid organ transplant recipients. J Am Acad Dermatol. 2011 Aug;65(2):253–61. https://doi.org/10.1016/j.jaad.2010.11.062.

    Article  PubMed  Google Scholar 

  53. Euvrard S, Kanitakis J, Claudy A. Skin cancers after organ transplantation. N Engl J Med. 2003;348(17):1681–91.

    PubMed  Google Scholar 

  54. Krynitz B, Edgren G, Lindelöf B, Baecklund E, Brattström C, Wilczek H, et al. Risk of skin cancer and other malignancies in kidney, liver, heart and lung transplant recipients 1970 to 2008–a Swedish population-based study. Int J Cancer. 2013;132(6):1429–38. https://doi.org/10.1002/ijc.27765.

    Article  CAS  PubMed  Google Scholar 

  55. Bouwes Bavinck JN, Hardie DR, Green A, Cutmore S, MacNaught A, O’Sullivan B, et al. The risk of skin cancer in renal transplant recipients in Queensland, Australia: a follow-up study. Transplantation. 1996;61(5):715–21.

    CAS  PubMed  Google Scholar 

  56. Jensen P, Hansen S, Møller B, Leivestad T, Pfeffer P, Geiran O, et al. Skin cancer in kidney and heart transplant recipients and different long-term immunosuppressive therapy regimens. J Am Acad Dermatol. 1999;40(2 Pt 1):177–86.

    CAS  PubMed  Google Scholar 

  57. Dantal J, Hourmant M, Cantarovich D, Giral M, Blancho G, Dreno B, et al. Effect of long-term immunosuppression in kidney-graft recipients on cancer incidence: randomised comparison of two cyclosporin regimens. Lancet. 1998;351(9103):623–8.

    CAS  PubMed  Google Scholar 

  58. Engels EA, Pfeiffer RM, Fraumeni JF Jr, Kasiske BL, Israni AK, Snyder JJ, et al. Spectrum of cancer risk among US solid organ transplant recipients. JAMA. 2011;306(17):1891–901. https://doi.org/10.1001/jama.2011.1592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ducloux D, Carron PL, Rebibou JM, Aubin F, Fournier V, Bresson-Vautrin C, et al. CD4 lymphocytopenia as a risk factor for skin cancers in renal transplant recipients. Transplantation. 1998;65(9):1270–2.

    CAS  PubMed  Google Scholar 

  60. Hollenbeak CS, Todd MM, Billingsley EM, Harper G, Dyer AM, Lengerich EJ. Increased incidence of melanoma in renal transplantation recipients. Cancer. 2005;104(9):1962–7. https://doi.org/10.1002/cncr.21404.

    Article  PubMed  Google Scholar 

  61. Le Mire L, Hollowood K, Gray D, Bordea C, Wojnarowska F. Melanomas in renal transplant recipients. Br J Dermatol. 2006;154(3):472–7. https://doi.org/10.1111/j.1365-2133.2005.07094.x.

    Article  PubMed  Google Scholar 

  62. Zwald FO, Christenson LJ, Billingsley EM, Zeitouni NC, Ratner D, Bordeaux J, et al. Melanoma in solid organ transplant recipients. Am J Transplant. 2010;10(5):1297–304. https://doi.org/10.1111/j.1600-6143.2010.03078.x.

    Article  CAS  PubMed  Google Scholar 

  63. Lindelöf B, Sigurgeirsson B, Gäbel H, Stern RS. Incidence of skin cancer in 5356 patients following organ transplantation. Br J Dermatol. 2002;147(3):950–6.

    Google Scholar 

  64. Matin RN, Mesher D, Proby CM, McGregor JM, Bouwes Bavinck JN, del Marmol V, et al. Melanoma in organ transplant recipients: clinicopathological features and outcome in 100 cases. Am J Transplant. 2008;8(9):1891–900. https://doi.org/10.1111/j.1600-6143.2008.02326.x.

    Article  CAS  PubMed  Google Scholar 

  65. Strauss DC, Thomas JM. Transmission of donor melanoma by organ transplantation. Lancet Oncol. 2010;11(8):790–6. https://doi.org/10.1016/S1470-2045(10)70024-3.

    Article  PubMed  Google Scholar 

  66. Penn I. Malignant melanoma in organ allograft recipients. Transplantation. 1996;61(2):274–8.

    CAS  PubMed  Google Scholar 

  67. MacKie RM, Reid R, Junor B. Fatal melanoma transferred in a donated kidney 16 years after melanoma surgery. N Engl J Med. 2003;348(6):567–8. https://doi.org/10.1056/NEJM200302063480620.

    Article  PubMed  Google Scholar 

  68. Kim JK, Carmody IC, Cohen AJ, Loss GE. Donor transmission of malignant melanoma to a liver graft recipient: case report and literature review. Clin Transpl. 2009;23(4):571–4. https://doi.org/10.1111/j.1399-0012.2008.00928.x.

    Article  Google Scholar 

  69. Morris-Stiff G, Steel A, Savage P, Devlin J, Griffiths D, Portman B, et al. Transmission of donor melanoma to multiple organ transplant recipients. Am J Transplant. 2004;4(3):444–6.

    CAS  PubMed  Google Scholar 

  70. Dupuy P, Bagot M, Michel L, Descourt B, Dubertret L. Cyclosporin A inhibits the antigen-presenting functions of freshly isolated human Langerhans cells in vitro. J Invest Dermatol. 1991;96(4):408–13.

    CAS  PubMed  Google Scholar 

  71. Borghi-Cirri MB, Riccardi-Arbi R, Bacci S, Mori M, Pimpinelli N, Romagnoli P, et al. Inhibited differentiation of Langerhans cells in the rat epidermis upon systemic treatment with cyclosporin A. Histol Histopathol. 2001;16(1):107–12. https://doi.org/10.14670/HH-16.107.

    Article  CAS  PubMed  Google Scholar 

  72. Sauma D, Fierro A, Mora JR, Lennon-Duménil AM, Bono MR, Rosemblatt M, et al. Cyclosporine preconditions dendritic cells during differentiation and reduces IL-2 and IL-12 production following activation: a potential tolerogenic effect. Transplant Proc. 2003;35(7):2515–7.

    CAS  PubMed  Google Scholar 

  73. Abdul M, Charron D, Haziot A. Selective effects of cyclosporine A on Th2-skewed dendritic cells matured with viral-like stimulus by means of toll-like receptors. Transplantation. 2008;86(6):880–4. https://doi.org/10.1097/TP.0b013e3181861f1d.

    Article  CAS  PubMed  Google Scholar 

  74. Hojo M, Morimoto T, Maluccio M, Asano T, Morimoto K, Lagman M, et al. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature. 1999;397(6719):530–4. https://doi.org/10.1038/17401.

    Article  CAS  PubMed  Google Scholar 

  75. Han W, Ming M, He TC, He YY. Immunosuppressive cyclosporin A activates AKT in keratinocytes through PTEN suppression: implications in skin carcinogenesis. J Biol Chem. 2010;285(15):11369–77. https://doi.org/10.1074/jbc.M109.028142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wu X, Nguyen BC, Dziunycz P, Chang S, Brooks Y, Lefort K, et al. Opposing roles for calcineurin and ATF3 in squamous skin cancer. Nature. 2010;465(7296):368–72. https://doi.org/10.1038/nature08996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Marcil I, Stern RS. Squamous-cell cancer of the skin in patients given PUVA and ciclosporin: nested cohort crossover study. Lancet. 2001;358(9287):1042–5. https://doi.org/10.1016/S0140-6736(01)06179-7.

    Article  CAS  PubMed  Google Scholar 

  78. Guba M, Graeb C, Jauch KW, Geissler EK. Pro- and anti-cancer effects of immunosuppressive agents used in organ transplantation. Transplantation. 2004;77(12):1777–82.

    CAS  PubMed  Google Scholar 

  79. Walsh SB, Xu J, Xu H, Kurundkar AR, Maheshwari A, Grizzle WE, et al. Cyclosporine a mediates pathogenesis of aggressive cutaneous squamous cell carcinoma by augmenting epithelial-mesenchymal transition: role of TGFβ signaling pathway. Mol Carcinog. 2011;50(7):516–27. https://doi.org/10.1002/mc.20744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kasiske BL, Snyder JJ, Gilbertson DT, Wang C. Cancer after kidney transplantation in the United States. Am J Transplant. 2004;4(6):905–13. https://doi.org/10.1111/j.1600-6143.2004.00450.x.

    Article  PubMed  Google Scholar 

  81. Marcén R, Pascual J, Tato AM, Teruel JL, Villafruela JJ, Fernández M, et al. Influence of immunosuppression on the prevalence of cancer after kidney transplantation. Transplant Proc. 2003;35(5):1714–6.

    PubMed  Google Scholar 

  82. Marcén R, Galeano C, Fernández-Rodriguez A, Jiménez-Alvaro S, Teruel JL, Rivera M, et al. Effects of the new immunosuppressive agents on the occurrence of malignancies after renal transplantation. Transplant Proc. 2010;42(8):3055–7. https://doi.org/10.1016/j.transproceed.2010.08.002.

    Article  CAS  PubMed  Google Scholar 

  83. Bottomley WW, Ford G, Cunliffe WJ, Cotterill JA. Aggressive squamous cell carcinomas developing in patients receiving long-term azathioprine. Br J Dermatol. 1995;133(3):460–2.

    CAS  PubMed  Google Scholar 

  84. O’Donovan P, Perrett CM, Zhang X, Montaner B, Xu YZ, Harwood CA, et al. Azathioprine and UVA light generate mutagenic oxidative DNA damage. Science. 2005;309(5742):1871–4. https://doi.org/10.1126/science.1114233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. de Graaf YG, Rebel H, Elghalbzouri A, Cramers P, Nellen RG, Willemze R, et al. More epidermal p53 patches adjacent to skin carcinomas in renal transplant recipients than immunocompetent patients: the role of azathioprine. Exp Dermatol. 2008;17(4):349–55. https://doi.org/10.1111/j.1600-0625.2007.00651.x.

    Article  CAS  PubMed  Google Scholar 

  86. Ingvar A, Smedby KE, Lindelöf B, Fernberg P, Bellocco R, Tufveson G, et al. Immunosuppressive treatment after solid organ transplantation and risk of post-transplant cutaneous squamous cell carcinoma. Nephrol Dial Transplant. 2010;25(8):2764–71. https://doi.org/10.1093/ndt/gfp425.

    Article  CAS  PubMed  Google Scholar 

  87. Sehgal SN. Rapamune (RAPA, rapamycin, sirolimus): mechanism of action immunosuppressive effect results from blockade of signal transduction and inhibition of cell cycle progression. Clin Biochem. 1998;31(5):335–40.

    CAS  PubMed  Google Scholar 

  88. Kuo CJ, Chung J, Fiorentino DF, Flanagan WM, Blenis J, Crabtree GR. Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase. Nature. 1992;358(6381):70–3. https://doi.org/10.1038/358070a0.

    Article  CAS  PubMed  Google Scholar 

  89. Klümpen HJ, Beijnen JH, Gurney H, Schellens JH. Inhibitors of mTOR. Oncologist. 2010;15(12):1262–9. https://doi.org/10.1634/theoncologist.2010-0196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. von Manteuffel SR, Dennis PB, Pullen N, Gingras AC, Sonenberg N, Thomas G. The insulin-induced signalling pathway leading to S6 and initiation factor 4E binding protein 1 phosphorylation bifurcates at a rapamycin-sensitive point immediately upstream of p70s6k. Mol Cell Biol. 1997;17(9):5426–36.

    Google Scholar 

  91. Brunn GJ, Hudson CC, Sekulić A, Williams JM, Hosoi H, Houghton PJ, et al. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science. 1997;277(5322):99–101.

    CAS  PubMed  Google Scholar 

  92. Hara K, Yonezawa K, Kozlowski MT, Sugimoto T, Andrabi K, Weng QP, et al. Regulation of eIF-4E BP1 phosphorylation by mTOR. J Biol Chem. 1997;272(42):26457–63.

    CAS  PubMed  Google Scholar 

  93. Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 2002;110(2):177–89.

    CAS  PubMed  Google Scholar 

  94. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002;110(2):163–75.

    CAS  PubMed  Google Scholar 

  95. Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KV, Erdjument-Bromage H, et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient- sensitive interaction between raptor and mTOR. Mol Cell. 2003;11(4):895–904.

    CAS  PubMed  Google Scholar 

  96. Zhou H, Huang S. mTOR signaling in cancer cell motility and tumor metastasis. Crit Rev Eukaryot Gene Expr. 2010;20(1):1–16.

    PubMed  PubMed Central  Google Scholar 

  97. Luan FL, Ding R, Sharma VK, Chon WJ, Lagman M, Suthanthiran M. Rapamycin is an effective inhibitor of human renal cancer metastasis. Kidney Int. 2003;63(3):917–26. https://doi.org/10.1046/j.1523-1755.2003.00805.x.

    Article  CAS  PubMed  Google Scholar 

  98. Huber S, Bruns CJ, Schmid G, Hermann PC, Conrad C, Niess H, et al. Inhibition of the mammalian target of rapamycin impedes lymphangiogenesis. Kidney Int. 2007;71(8):771–7. https://doi.org/10.1038/sj.ki.5002112.

    Article  CAS  PubMed  Google Scholar 

  99. Kobayashi S, Kishimoto T, Kamata S, Otsuka M, Miyazaki M, Ishikura H. Rapamycin, a specific inhibitor of the mammalian target of rapamycin, suppresses lymphangiogenesis and lymphatic metastasis. Cancer Sci. 2007;98(5):726–33. https://doi.org/10.1111/j.1349-7006.2007.00439.x.

    Article  CAS  PubMed  Google Scholar 

  100. Monaco AP. The role of mTOR inhibitors in the management of posttransplant malignancy. Transplantation. 2009;87(2):157–63. https://doi.org/10.1097/TP.0b013e318193886e.

    Article  CAS  PubMed  Google Scholar 

  101. Mathew T, Kreis H, Friend P. Two-year incidence of malignancy in sirolimus-treated renal transplant recipients: results from five multicenter studies. Clin Transpl. 2004;18(4):446–9. https://doi.org/10.1111/j.1399-0012.2004.00188.x.

    Article  Google Scholar 

  102. Campistol JM, Eris J, Oberbauer R, Friend P, Hutchison B, Morales JM, et al. Sirolimus therapy after early cyclosporine withdrawal reduces the risk for cancer in adult renal transplantation. J Am Soc Nephrol. 2006;17(2):581–9. https://doi.org/10.1681/ASN.2005090993.

    Article  CAS  PubMed  Google Scholar 

  103. Kahan BD, Yakupoglu YK, Schoenberg L, Knight RJ, Katz SM, Lai D, et al. Low incidence of malignancy among sirolimus / cyclosporine-treated renal transplant recipients. Transplantation. 2005;80(6):749–58.

    CAS  PubMed  Google Scholar 

  104. Tessmer CS, Magalhães LV, Keitel E, Valar C, Gnatta D, Pra RL, et al. Conversion to sirolimus in renal transplant recipients with skin cancer. Transplantation. 2006;82(12):1792–3. https://doi.org/10.1097/01.tp.0000250767.67472.58.

    Article  PubMed  Google Scholar 

  105. Fernández A, Marcén R, Pascual J, Galeano C, Ocaña J, Arellano EM, et al. Conversion from calcineurin inhibitors to everolimus in kidney transplant recipients with malignant neoplasia. Transplant Proc. 2006;38(8):2453–5. https://doi.org/10.1016/j.transproceed.2006.08.016.

    Article  CAS  PubMed  Google Scholar 

  106. de Fijter JW. Use of proliferation signal inhibitors in non-melanomaskin cancer following renal transplantation. Nephrol Dial Transplant. 2007;22(Suppl 1):i23–6. https://doi.org/10.1093/ndt/gfm086.

    Article  CAS  PubMed  Google Scholar 

  107. Long MD, Herfarth HH, Pipkin CA, Porter CQ, Sandler RS, Kappelman MD. Increased risk for monmelanoma skin cancer in patients with inflammatory bowel disease. Clin Gastroenterol Hepatol. 2010;8(3):268–74. https://doi.org/10.1016/j.cgh.2009.11.024.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Esser AC, Abril A, Fayne S, Doyle JA. Acute development of multiple keratoacanthomas and squamous cell carcinomas after treatment with infliximab. J Am Acad Dermatol. 2004;50(5 Suppl):S75–7. https://doi.org/10.1016/j.jaad.2003.11.044.

    Article  PubMed  Google Scholar 

  109. Smith KJ, Skelton HG. Rapid onset of cutaneous squamous cell carcinoma in patients with rheumatoid arthritis after starting tumor necrosis factor [alpha] receptor IgG1-Fc fusion complex therapy. J Am Acad Dermatol. 2001;45(6):953–6. https://doi.org/10.1067/mjd.2001.117725.

    Article  CAS  PubMed  Google Scholar 

  110. Chakravarty EF, Michaud K, Wolfe F. Skin cancer, rheumatoid arthritis, and tumor necrosis factor inhibitors. J Rheumatol. 2005;32(11):2130–5.

    CAS  PubMed  Google Scholar 

  111. Fryrear RS 2nd, Wiggins AK, Sangueza O, Yosipovitch G. Rapid onset of cutaneous squamous cell carcinoma of the penis in a patient with psoriasis on etanercept therapy. J Am Acad Dermatol. 2004;51(6):1026. https://doi.org/10.1016/j.jaad.2004.07.031.

    Article  PubMed  Google Scholar 

  112. Ly L, Czarnecki D. The rapid onset of multiple squamous cell carcinomas during etanercept treatment for psoriasis. Br J Dermatol. 2007;157(5):1076–8. https://doi.org/10.1111/j.1365-2133.2007.08182.x.

    Article  CAS  PubMed  Google Scholar 

  113. Comte C, Guilhou JJ, Guillot B, Dereure O. Rapid onset and fatal outcome of two squamous cell carcinomas of the genitalia in a patient treated with etanercept for cutaneous psoriasis. Dermatology. 2008;217(3):284–5. https://doi.org/10.1159/000150603.

    Article  PubMed  Google Scholar 

  114. Fulchiero GJ Jr, Salvaggio H, Drabick JJ, Staveley-O’Carroll K, Billingsley EM, Marks JG, et al. Eruptive latent metastatic melanomas after initiation of antitumor necrosis factor therapies. J Am Acad Dermatol. 2007;56(5 Suppl):S65–7. https://doi.org/10.1016/j.jaad.2006.12.024.

    Article  PubMed  Google Scholar 

  115. Becher B, Blain M, Giacomini PS, Antel JP. Inhibition of Th1 polarization by soluble TNF receptor is dependent on antigen-presenting cell-derived IL-12. J Immunol. 1999;162(2):684–8.

    CAS  PubMed  Google Scholar 

  116. Dommasch ED, Abuabara K, Shin DB, Nguyen J, Troxel AB, Gelfand JM. The risk of infection and malignancy with tumor necrosis factor antagonists in adults with psoriatic disease: a systematic review and meta-analysis of randomized controlled trials. J Am Acad Dermatol. 2011;64(6):1035–50. https://doi.org/10.1016/j.jaad.2010.09.734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Jantschitsch C, Weichenthal M, Proksch E, Schwarz T, Schwarz A. IL-12 and IL-23 affect photocarcinogenesis differently. J Invest Dermatol. 2012;132(5):1479–86. https://doi.org/10.1038/jid.2011.469.

    Article  CAS  PubMed  Google Scholar 

  118. Trinchieri G. Proinflammatory and immunoregulatory functions of interleukin-12. Int Rev Immunol. 1998;16(3–4):365–96. https://doi.org/10.3109/08830189809043002.

    Article  CAS  PubMed  Google Scholar 

  119. Hunter CA. New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat Rev Immunol. 2005;5(7):521–31. https://doi.org/10.1038/nri1648.

    Article  CAS  PubMed  Google Scholar 

  120. Maeda A, Schneider SW, Kojima M, Beissert S, Schwarz T, Schwarz A. Enhanced photocarcinogenesis in interleukin-12-deficient mice. Cancer Res. 2006;66(6):2962–9. https://doi.org/10.1158/0008-5472.CAN-05-3614.

    Article  CAS  PubMed  Google Scholar 

  121. Langley RG, Elewski BE, Lebwohl M, Reich K, Griffiths CE, Papp K, et al. Secukinumab in plaque psoriasis--results of two phase 3 trials. N Engl J Med. 2014;371(4):326–38. https://doi.org/10.1056/NEJMoa1314258.

    Article  CAS  PubMed  Google Scholar 

  122. Blauvelt A. Safety of secukinumab in the treatment of psoriasis. Expert Opin Drug Saf. 2016;15(10):1413–20. https://doi.org/10.1080/14740338.2016.1221923.

    Article  CAS  PubMed  Google Scholar 

  123. Langley RG, Papp K, Gooderham M, Zhang L, Mallinckrodt C, Agada N, et al. Efficacy and safety of continuous every-2-week dosing of ixekizumab over 52 weeks in patients with moderate-to-severe plaque psoriasis in a randomized phase III trial (IXORA-P). Br J Dermatol. 2018;178(6):1315–23. https://doi.org/10.1111/bjd.16426.

    Article  CAS  PubMed  Google Scholar 

  124. Nardinocchi L, Sonego G, Passarelli F, Avitabile S, Scarponi C, Failla CM, et al. Interleukin-17 and interleukin-22 promote tumor progression in human nonmelanoma skin cancer. Eur J Immunol. 2015;45(3):922–31. https://doi.org/10.1002/eji.201445052.

    Article  CAS  PubMed  Google Scholar 

  125. Wang L, Yi T, Zhang W, Pardoll DM, Yu H. IL-17 enhances tumor development in carcinogen-induced skin cancer. Cancer Res. 2010;70(24):10112–20. https://doi.org/10.1158/0008-5472.CAN-10-0775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chuang TY, Heinrich LA, Schultz MD, Reizner GT, Kumm RC, Cripps DJ. PUVA and skin cancer. A historical cohort study on 492 patients. J Am Acad Dermatol. 1992;26(2 Pt 1):173–7.

    CAS  PubMed  Google Scholar 

  127. Studniberg HM, Weller P. PUVA, UVB, psoriasis, and nonmelanoma skin cancer. J Am Acad Dermatol. 1993;29(6):1013–22.

    CAS  PubMed  Google Scholar 

  128. Ortiz Salvador JM, Pérez-Ferriols A, Alegre de Miquel V, Saneleuterio Temporal M, Vilata Corell JJ. Incidence of non-melanoma skin cancer in patients treated with psoralen and ultraviolet A therapy. Med Clin (Barc). 2018; pii: S0025-7753(18)30645–30646. https://doi.org/10.1016/j.medcli.2018.09.018.

  129. Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD, et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature. 2010;463(7278):191–6. https://doi.org/10.1038/nature08658.

    Article  CAS  PubMed  Google Scholar 

  130. Matsushita H, Vesely MD, Koboldt DC, Rickert CG, Uppaluri R, Magrini VJ, et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature. 2012;482(7385):400–4. https://doi.org/10.1038/nature10755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. McArthur GA, Ribas A. Targeting oncogenic drivers and the immune system in melanoma. J Clin Oncol. 2013;31(4):499–506. https://doi.org/10.1200/JCO.2012.45.5568.

    Article  CAS  PubMed  Google Scholar 

  132. Ribas A, Butterfield LH, Glaspy JA, Economou JS. Current developments in cancer vaccines and cellular immunotherapy. J Clin Oncol. 2003;21(12):2415–32. https://doi.org/10.1200/JCO.2003.06.041.

    Article  CAS  PubMed  Google Scholar 

  133. Rosenberg SA. IL-2: the first effective immunotherapy for human cancer. J Immunol. 2014;192(12):5451–8. https://doi.org/10.4049/jimmunol.1490019.

    Article  CAS  PubMed  Google Scholar 

  134. Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G, Margolin K, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999;17(7):2105–16. https://doi.org/10.1200/JCO.1999.17.7.2105.

    Article  CAS  PubMed  Google Scholar 

  135. Coit DG, Andtbacka R, Bichakjian CK, Dilawari RA, Dimaio D, Guild V, et al. Melanoma. J Natl Compr Cancer Netw. 2009;7(3):250–75.

    CAS  Google Scholar 

  136. Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017;14(8):463–82. https://doi.org/10.1038/nrclinonc.2017.43.

    Article  CAS  PubMed  Google Scholar 

  137. Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 1995;182(2):459–65.

    CAS  PubMed  Google Scholar 

  138. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23. https://doi.org/10.1056/NEJMoa1003466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364(26):2517–26. https://doi.org/10.1056/NEJMoa1104621.

    Article  CAS  PubMed  Google Scholar 

  140. Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O, et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol. 2015;33(17):1889–94. https://doi.org/10.1200/JCO.2014.56.2736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ribas A. Tumor immunotherapy directed at PD-1. N Engl J Med. 2012;366(26):2517–9. https://doi.org/10.1056/NEJMe1205943.

    Article  CAS  PubMed  Google Scholar 

  142. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54. https://doi.org/10.1056/NEJMoa1200690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369(2):134–44. https://doi.org/10.1056/NEJMoa1305133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Topalian SL, Sznol M, McDermott DF, Kluger HM, Carvajal RD, Sharfman WH, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 2014;32(10):1020–30. https://doi.org/10.1200/JCO.2013.53.0105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Weber JS, Kähler KC, Hauschild A. Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol. 2012;30(21):2691–7. https://doi.org/10.1200/JCO.2012.41.6750.

    Article  CAS  PubMed  Google Scholar 

  146. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17(13):4550–7. https://doi.org/10.1158/1078-0432.CCR-11-0116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32. https://doi.org/10.1056/NEJMoa1503093.

    Article  CAS  PubMed  Google Scholar 

  148. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65. https://doi.org/10.1056/NEJMoa1200694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Curran MA, Montalvo W, Yagita H, Allison JP. PD 1 and CTLA 4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA. 2010;107(9):4275–80. https://doi.org/10.1073/pnas.0915174107.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33. https://doi.org/10.1056/NEJMoa1302369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015;372(21):2006–17. https://doi.org/10.1056/NEJMoa1414428.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Weber JS, Gibney G, Sullivan RJ, Sosman JA, Slingluff CL Jr, Lawrence DP, et al. Sequential administration of nivolumab and ipilimumab with a planned switch in patients with advanced melanoma (CheckMate 064): an open-label, randomised, phase 2 trial. Lancet Oncol. 2016;17(7):943–55. https://doi.org/10.1016/S1470-2045(16)30126-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008;8(4):299–308. https://doi.org/10.1038/nrc2355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chapuis AG, Thompson JA, Margolin KA, Rodmyre R, Lai IP, Dowdy K, et al. Transferred melanoma-specific CD8_ T cells persist, mediate tumor regression, and acquire central memory phenotype. Proc Natl Acad Sci USA. 2012;109(12):4592–7. https://doi.org/10.1073/pnas.1113748109.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Ott PA, Hodi FS. Talimogene laherparepvec for the treatment of advanced melanoma. Clin Clin Cancer Res. 2016;22(13):3127–31. https://doi.org/10.1158/1078-0432.CCR-15-2709.

    Article  CAS  PubMed  Google Scholar 

  156. Dranoff G. GM CSF-based cancer vaccines. Immunol Rev. 2002;188:147–54.

    CAS  PubMed  Google Scholar 

  157. Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33(25):2780–8. https://doi.org/10.1200/JCO.2014.58.3377.

    Article  CAS  PubMed  Google Scholar 

  158. Puzanov I, Milhem MM, Minor D, Hamid O, Li A, Chen L, et al. Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB IV melanoma. J Clin Oncol. 2016;34(22):2619–26. https://doi.org/10.1200/JCO.2016.67.1529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Long GV, Dummer R, Ribas A, Puzanov I, VanderWalde A, Andtbacka RHI, et al. Efficacy analysis of MASTERKEY-265 phase 1b study of talimogene laherparepvec (T-VEC) and pembrolizumab (pembro) for unresectable stage IIIB-IV melanoma. J Clin Oncol. 2016;34(Suppl):9568.

    Google Scholar 

  160. Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT, et al. Up-regulation of PD-L1, IDO, and Tregs in the melanoma tumor microenvironment is driven by CD8+ T cells. Sci Transl Med. 2013;5(200):200ra116. https://doi.org/10.1126/scitranslmed.3006504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ribas A, Robert C, Hodi S, Wolchok JD, Joshua AM, Hwu W, et al. Association of response to programmed death receptor 1 (PD-1) blockade with pembrolizumab (MK-3475) with an interferon-inflammatory immune gene signature. J Clin Oncol. 2015;33(Suppl):3001.

    Google Scholar 

Download references

Acknowledgments

None.

Human and Animal Rights

This chapter does not contain any studies with human or animal subjects performed by any of the author.

Conflict of Interests

The authors declare that they have no conflict of interests to disclose.

Funding

There was no funding used to support this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kory P. Schrom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schrom, K.P., Kim, I., Baron, E.D. (2020). The Immune System and Pathogenesis of Melanoma and Non-melanoma Skin Cancer. In: Reichrath, J. (eds) Sunlight, Vitamin D and Skin Cancer. Advances in Experimental Medicine and Biology, vol 1268. Springer, Cham. https://doi.org/10.1007/978-3-030-46227-7_11

Download citation

Publish with us

Policies and ethics