Skip to main content

Role of Nitrogen and Its Agricultural Management in Changing Environment

  • Chapter
  • First Online:
Contaminants in Agriculture

Abstract

Nitrogen (N) is the most limiting nutrient element for crop production which controls the primary production of the agricultural system. It is one of the key inputs for the green revolution in India which achieved due to the substantial use of synthetic N-fertilizers. Since then the use of N-fertilizers has increased by many folds. The injudicious use of N has severely affected the N cycle causing N losses from cropland via nitrification, leaching and volatilization pathways. These N losses minimize the nitrogen use efficiency (NUE) by the crops and the factor productivity per unit of N application. Besides this it cause various environmental problems such as groundwater contamination due to nitrate (NO3-) leaching, eutrophication of surface water bodies due to runoff loss of N, air pollution and aerosols formation due to oxides of nitrogen (NO and NO2) and ammonia (NH3), and global warming due to nitrous oxides (N2O) emission. The better understanding of N dynamics and factors affecting its losses from cropland can be used to develop the strategies for enhancing NUE and to mitigate the adverse environmental impacts. Management of N is a challenging task and several methods individually and in combination are generally used to manage it efficiently. The decision support tools, integrated nitrogen management (INM), precision nitrogen management, site-specific nitrogen management (SSNM), etc., could be substantially used to enhance NUE and for sustainable crop production. In the present chapter, all the aspect of the N including, various pathways of N cycle, N losses, environmental impacts, and its judicious management to enhance the NUE and to mitigate the adverse environmental impacts have been well discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler AA, Doole GJ, Romera AJ, Beukes PC (2015) Managing greenhouse gas emissions in two major dairy regions of New Zealand: a system-level evaluation. Agric Syst 135:1–9

    Article  Google Scholar 

  • Aggarwal RK, Raina P, Kumar P (1987) Ammonia volatilization losses from urea and their possible management for increasing nitrogen use efficiency in an arid region. J Arid Environ 13:163–168

    Google Scholar 

  • Aulakh MS, Bijay-Singh (1996) Nitrogen losses and fertilizer N use efficiency in irrigated porous soils. Nutr Cycl Agroecosyst 47(3):197–212. https://doi.org/10.1007/BF01986275

    Article  Google Scholar 

  • Baalsrud K, Baalsrud KS (1954) Studies on Thiobacillus denitrificans. Arch Microbiol 20:34–62

    CAS  Google Scholar 

  • Baligar VC, Fageria NK, He H (2001) Nutrient use efficiency in plants. Commun Soil Sci Plant Anal 32:921–950

    Article  CAS  Google Scholar 

  • Bauer SE, Koch D, Unger N, Metzger SM, Shindell DT, Streets DG (2007) Nitrate aerosols today and in 2030: a global simulation including aerosols and tropospheric ozone. Atmos Chem Phys 7:5043–5059

    Google Scholar 

  • Berntsen J, Petersen BM, Jacobsen BH, Olesen JE, Hutchings NJ (2003) Evaluating nitrogen taxation scenarios using the dynamic whole farm simulation model FASSET. Agric Syst 76:817–839

    Article  Google Scholar 

  • Berntsen TK, Fuglestvedt JS, Joshi MM, Shine KP, Stuber N, Ponater M, Sausen R, Hauglustaine DA, Li L (2005) Response of climate to regional emissions of ozone precursors: sensitivities and warming potentials. Tellus B Chem Phys Meteorol 57:283–304

    Google Scholar 

  • Beutler AN, Centurion JF, Centurion MAPC, Silva AP (2006) Efeito da compactação na produtividade de cultivares de soja em Latossolo Vermelho. R Bras Ci Solo 30:787–794

    Article  Google Scholar 

  • Bhatia A, Jain N, Pathak H (2013) Methane and nitrous oxide emissions from Indian rice paddies, agricultural soils and crop residue burning. Greenhouse Gases Sci Technol 3(3):196–211. https://doi.org/10.1002/ghg.1339

    Article  CAS  Google Scholar 

  • Bhatia A, Kumar A, Kumar V, Jain N (2013a) Low carbon option for sustainable agriculture. Indian Farming 63(2):18–22

    Google Scholar 

  • Bhatia A, Kumar AK, Das TK, Singh J, Jain N, Pathak H (2013b) Methane and nitrous oxide emissions from soils under direct seeded rice. Int J Agric Sci Stat 9(2):729–736

    Google Scholar 

  • Bhattacharyya R, Bhatia A, Das TK, Lata S, Kumar A, Tomer R, Singh G, Kumar S, Biswas AK (2018) Aggregate-associated N and global warming potential of conservation agriculture-based cropping of maize-wheat system in the north-western Indo-Gangetic Plains. Soil Tillage Res 182:66–77

    Article  Google Scholar 

  • Bijay-Singh, Varinderpal-Singh, Purba J, Sharma RK, Jat ML, Yadvinder-Singh, Thind HS, Gupta RK, Choudhary OP, Chandna P, Khurana HS, Kumar A, Jagmohan-Singh, Uppal HS, Uppal RK, Vashistha M, Gupta RK (2015) Site-specific nitrogen management in irrigated transplanted rice (Oryza sativa) using an optical sensor. Precis Agric 16:455–475

    Article  Google Scholar 

  • Bolan NS, Hedley MJ (2003) Role of carbon, nitrogen, and sulfur cycles in soil acidification. In: Rengel Z (ed) Handbook of soil acidity. Marcek Dekker, New York, pp 29–56

    Google Scholar 

  • Bouwman AF (1996) Direct emission of nitrous oxide from agricultural soils. Nutr Cycl Agroecosyst 46:53–70

    Article  CAS  Google Scholar 

  • Brady NC, Weil RR (2002) The nature and properties of soils, 13th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Brentrup F, Kusters J, Lammel J, Kuhlmann H (2000) Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. Int J Life Cycle Assess (Berlin) 5(6):349–357

    Article  CAS  Google Scholar 

  • Buol SW (1995) Sustainability of soil use. Annu Rev Ecol Syst 26:25–44

    Article  Google Scholar 

  • Buresh RJ, Peng SB, Huang JL, Yang JC, Wang GH, Zhong XH, Zou YB (2004) Rice systems in China with high nitrogen inputs. In: Mosier AR, Syers JK, Freney JR (eds) Agriculture and the nitrogen cycle: assessing the impacts of fertilizer use on food production and the environment. Island Press, Washington, DC, pp 143–153

    Google Scholar 

  • Burns D (2004) The effects of atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southwestern Wyoming, USA: a critical review. Environ Pollut 127:257–269

    Article  CAS  PubMed  Google Scholar 

  • Cameron KC et al (2013) Nitrogen losses from the soil/plant system: a review. Ann Appl Biol (Warwick) 162(2):145–173

    Article  CAS  Google Scholar 

  • Cardoso D, Silva MLN, Freitas DAF, Avanzi JC (2012) Plantas de cobertura no controle das perdas de solo, água e nutrientes por erosão hídrica. R Bras Eng Agric Amb 16:632–638

    Article  Google Scholar 

  • Carlson CA, Ingraham JL (1983) Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Appl Environ Microbiol 45:1247–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassman KG, Dobermann A, Walters D (2002) Agro-ecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 31:132–140

    Article  PubMed  Google Scholar 

  • Chaptal JA, Nicholson WT (1800) Elements of chemistry, vol 1, 3rd edn. CC and J Robinson, London, pp xxxv–xxxvi

    Google Scholar 

  • Chaudhury ATMA, Kennedy IR (2004) Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biol Fertil Soils 39:219–227

    Article  Google Scholar 

  • Ciampitti IA, Ciarlo EA, Conti ME (2008) Nitrous oxide emissions from soil during soybean (Glycine max (L.) Merrill) crop phenological stages and stubbles decomposition period. Biol Fertil Soils 44(4):581–588

    Article  Google Scholar 

  • Cogo NP (1981) Effect of residue cover, tillage induced roughness, and slope length on erosion and related parameters [tese]. Purdue University, West Lafayette

    Google Scholar 

  • Crosson P, Shalloo L, O’brien D, Lanigan GJ, Foley PA, Boland TM, Kenny DA (2011) A review of whole farm systems models of greenhouse gas emissions from beef and dairy cattle production systems. Anim Feed Sci Technol 166(167):29–45

    Article  CAS  Google Scholar 

  • Daniel R (1772) Dissertatio Inauguralis de aere fixo, aut mephitico (Inaugural dissertation on the air [called] fixed or mephitic). MD dissertation, University of Edinburgh, Scotland. English translation: Dobbin L (1935) Daniel Rutherford’s inaugural dissertation. J Chem Educ 12(8):370–375. https://doi.org/10.1021/ed012p370

  • Davidson EA (2009) The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat Geosci 2(9):659–662

    Article  CAS  Google Scholar 

  • Delgado JA, Shaffer MJ, Lal H, Mckinney S, Gross CM, Cover H (2008) Assessment of nitrogen losses to the environment with a Nitrogen Trading Tool (NTT). Comput Electron Agric 63:193–206

    Article  Google Scholar 

  • Derwent RG, Collins WJ, Johnson CE, Stevenson DS (2001) Transient behaviour of tropospheric ozone precursors in a global 3-D CTM and their indirect greenhouse effects. Clim Change 49:463–487 

    Google Scholar 

  • Dinnes DL, Karlen DL, Jaynes DB, Kaspar TC, Hatfield JL, Colvin TS, Cambardella CA (2002) Nitrogen management strategies to reduce nitrate leaching in tile-drained Midwestern soils. Agron J 94:153–171

    Article  Google Scholar 

  • Dobermann A, Cassman KG (2004) Environmental dimensions of fertilizer nitrogen: what can be done to increase nitrogen use efficiency and ensure global food security? In: Mosier AR, Syers JK, Freney JR (eds) Agriculture and the nitrogen cycle: assessing the impacts of fertilizer use on food production and the environment. Island Press, Washington, DC/Paris, pp 261–278

    Google Scholar 

  • Dobermann A, Witt C, Dawe D, Gines HC, Nagarajan R, Satawathananont S, Son TT, Tan PS, Wang GH, Chien NV, Thoa VTK, Phung CV, Stalin P, Muthukrishnan P, Ravi V, Babu M, Chatuporn S, Kongchum M, Sun Q, Fu R, Simbahan GC, Adviento MAA (2002) Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crop Res 74:37–66

    Article  Google Scholar 

  • Dodds WK, Bouska WW, Eitzmann JL, Pilger TJ, Pitts KL, Riley AJ, Schloesser JT, Thornbrugh DJ (2009) Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environ Sci Technol 43:12–19

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi BS, Singh VK, Meena MC, Dey A, Datta SP (2016) Integrated nutrient management for enhancing nitrogen use efficiency. Indian J Fertil 12(4):62–71

    Google Scholar 

  • Fageria NK (2002) Soil quality vs. environmentally based agriculture. Commun Soil Sci Plant Anal 33:2301–2329

    Article  CAS  Google Scholar 

  • Fageria NK, Baligar VC (2005) Role of cover crops in improving soil and row crop productivity. Commun Soil Sci Plant Anal 36:2733–2757

    Article  CAS  Google Scholar 

  • Fagodiya RK, Pathak H, Kumar A, Bhatia A, Jain N (2017a) Global temperature change potential of nitrogen use in agriculture: a 50-year assessment. Sci Rep 7:4928

    Article  CAS  Google Scholar 

  • Fagodiya RK, Pathak H, Bhatia A, Kumar A, Singh SD, Jain N, Harith R (2017b) Simulation of maize (Zea mays L.) yield under alternative nitrogen fertilization using infocrop-maize model. Biochem Cell Arch 17(1):65–71

    Google Scholar 

  • Fagodiya RK, Pathak H, Meena BL, Meena RK, Nagdev R (2017c) Need to Estimate the Net Global Warming Potential of Nitrogenous Fertilizers. Adv Plants Agric Res 6(4):00220. https://doi.org/10.15406/apar.2017.06.00220

  • Fagodiya RK, Pathak H, Bhatia A, Jain N, Gupta DK, Kumar A, Malyan SK, Dubey R, Radhakrishanan S, Tomer R (2019) Nitrous oxide emission and mitigation from maize–wheat rotation in the upper Indo-Gangetic Plains. Carbon Manag 10(5):489–499

    Article  CAS  Google Scholar 

  • Fagodiya RK, Pathak H, Bhatia A, Jain N, Gupta DK (2020) Global warming potential and its cost of mitigation from maize (Zea mays) - wheat (Triticum aestivum) cropping system. Indian J Agr Sci 90(1):69–74

    Google Scholar 

  • Fagodiya RK, Pathak H, Bhatia A, Jain N, Kumar A, Malyan SK (2020) Global warming impacts of nitrogen use in agriculture: An assessment of Indian since 1960. Carbon Management (In press)

    Google Scholar 

  • FAI (2015) Fertiliser statistics, 4th edn. The Fertiliser Association of India, New Delhi

    Google Scholar 

  • FAI (2017) The Fertilizers Association of India, Delhi, India. http://www.faidelhi.org

  • FAOSTAT (2016) Food and Agriculture Organization of the United Nations, Rome, Italy. Available at http://faostat.fao.org

  • Fowler D, Pyle JA, Raven JA, Sutton MA (2013) The global nitrogen cycle in the twenty-first century: introduction. Philos Trans R Soc B Biol Sci 36:20130165

    Article  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J (2007) Changes in atmospheric constituents and in radiative forcing. Chapter 2. In Climate Change 2007. The Physical Science Basis 2007

    Google Scholar 

  • Franche C, Lindstrom K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59

    Article  CAS  Google Scholar 

  • Gaby JC, Buckley DH (2011) A global census of nitrogenase diversity. Environ Microbiol 13:1790–1799

    Article  CAS  PubMed  Google Scholar 

  • Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bioscience 53:341–356

    Article  Google Scholar 

  • Ghosh BC, Bhat R (1998) Environmental hazards of nitrogen loading in wetland rice fields. Environ Pollut 102(S1):123–126

    Article  CAS  Google Scholar 

  • Gu B, Chang J, Min Y, Ge Y, Zhu Q, Galloway JN, Peng C (2013) The role of industrial nitrogen in the global nitrogen biogeochemical cycle. Sci Rep 3:2579. https://doi.org/10.1038/srep02579

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta DK, Bhatia A, Kumar A, Chakrabati B, Jain N, Pathak H (2015) Global warming potential of rice (Oryza sativa)-wheat (Triticum aestivum) cropping system of the Indo-Gangetic Plains. Indian J Agric Sci 85(6):807–816

    Google Scholar 

  • Gupta DK, Bhatia A, Das TK, Singh P, Kumar A, Jain N, Pathak H (2016a) Economic analysis of different greenhouse gas mitigation technologies in rice–wheat cropping system of the Indo-Gangetic Plains. Curr Sci 110(5):867–873

    CAS  Google Scholar 

  • Gupta DK, Bhatia A, Kumar A, Das TK, Jain N, Tomer R, Malyan SK, Fagodiya RK, Dubey R, Pathak H (2016b) Mitigation of greenhouse gas emission from rice–wheat system of the Indo-Gangetic plains: through tillage, irrigation and fertilizer management. Agric Ecosyst Environ 230:1–9

    Article  CAS  Google Scholar 

  • Hallin S, Jones CM, Schloter M, Philippot L (2009) Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment. ISME J 3:597–605

    Article  CAS  PubMed  Google Scholar 

  • Hegde DM, Dwivedi BS (1993) Integrated nutrient supply and management as a strategy to meet nutrient demand. Fertil News 38(12):49–59

    Google Scholar 

  • Humphreys E, Chalk PM, Muirhead WA, White RJG (1992) Nitrogen fertilization of dry-seeded rice in southeast Australia. Fertil Res 31:221–234

    Article  CAS  Google Scholar 

  • Hutchinson C, Simonne E, Solano P, Meldrum J, Livingston-Way P (2003) Testing of controlled release fertilizer programs for seep irrigated Irish potato production. J Plant Nutr 26:1709–1723

    Article  CAS  Google Scholar 

  • IPCC (2006) Guidelines for national greenhouse gas inventories (Eggleston HS, Buendia L, Miwa K, Ngara T and Tanabe K (eds)). Prepared by the National Greenhouse Gas Inventories Programme. IGES, Japan

    Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability working group II contribution to the fifth assessment report. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Ishii S, Ikeda S, Minamisawa K, Senoo K (2011) Nitrogen cycling in rice paddy environments: past achievements and future challenges. Microbes Environ/JSME 26(4):282–292. https://doi.org/10.1264/jsme2.me11293

    Article  Google Scholar 

  • Jain N, Arora P, Tomar R, Mishra SV, Bhatia A, Pathak H, Chakraborty D, Kumar V, Dubey DS, Harit RC, Singh JP (2016) Greenhouse gases emission from soils under major crops in Northwest India. Sci Total Environ 542:551–561

    Article  CAS  PubMed  Google Scholar 

  • Jung MY, Well R, Min D, Giesemann A, Park SJ, Kim JG, Kim SJ, Rheet SK (2014) Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils. ISME J 8:115–1125

    Article  CAS  Google Scholar 

  • Khalil K, Mary B, Renault P (2004) Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O2 concentration. Soil Biol Biochem 36(4):687–699

    Article  CAS  Google Scholar 

  • Khan SA, Sharma GK, Malla FA, Kumar A, Rashmi GN (2019) Microalgae based biofertilizers: a biorefinery approach to phycoremediate wastewater and harvest biodiesel and manure J Clean Prod 211:1412–1419

    Google Scholar 

  • Klimaszyk P, Rzymski P (2010) Surface runoff as a factor determining trophic State of Midforest Lake. Pol J Environ Stud 20(5):1203–1210

    Google Scholar 

  • Kool DM, Wrage N, Boltenstern Z, Pfeffer S, Brus M, Oenema D (2010) Nitrifier denitrification can be a source of N2O from soil: a revised approach to the dual isotope labelling method. Eur J Soil Sci 61:759–772

    Article  CAS  Google Scholar 

  • Kulshrestha UC, Granat L, Engardt M, Rodhe H (2005) Review of precipitation monitoring studies in Indiada search for regional patterns. Atmos Environ 39:7403–7419. https://doi.org/10.1016/j.atmosenv.2005.08.035

    Article  CAS  Google Scholar 

  • Kumar A, Gupta DK, Kumar M (2013) Green manure crops: a boon for agricultural soil. Int J Agric Environ Biotechnol 6:193

    Google Scholar 

  • Kumar A, Tomer R, Bhatia A, Jain N, Pathak H (2016) Greenhouse gas mitigation in Indian agriculture. In: Pathak H, Chakrabarti B (eds) Climate change and agriculture technologies for enhancing resilience. ICARIARI, New Delhi, pp 137–149

    Google Scholar 

  • Kumar A, Bhatia A, Fagodiya RK, Malyan SK, Meena BL (2017) Eddy covariance flux tower: a promising technique for greenhouse gases measurement. Adv Plant Agric Res 7:00263

    Google Scholar 

  • Kumar SS, Kumar A, Singh S, Malyan SK, Baram S, Sharma J, Singh R, Pugazhendhi A (2020) Industrial wastes: Fly ash, steel slag and phosphogypsum- potential candidates to mitigate greenhouse gas emissions from paddy fields. Chemosphere 241:124824

    Google Scholar 

  • Ladha JK, Dawe D, Pathak H, Padre AT, Yadav RL, Bijay S, Singh YS, Singh Y, Singh P, Kundu AL, Sakal R, Ram N, Regmi AP, Gami SK, Bhandari AL, Amin R, Yadav CR, Bhattarai EM, Das S, Aggarwal HP, Gupta RK, Hobbs PR (2003) How extensive are yield declines in long term rice-wheat experiments in Asia? Field Crop Res 81:159–180

    Article  Google Scholar 

  • Ladha JK, Pathak HP, Krupnik TJ, Six J, van Kessel C (2005) Efficiency of fertiliser nitrogen in cereal production: retrospect and prospect. Adv Agron 87:85–156

    Article  CAS  Google Scholar 

  • Ladha JK, Tirol-Padre A, Reddy CK, Cassman KG, Verma S, Powlson DS, van Kessel C, Richter D de B, Chakraborty D, Pathak H (2016) Global nitrogen budgets in cereals a 50 year-assessment. Sci Rep 6:19355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin DX, Fan XH, Hu F, Zhao HT, Luo JF (2007) Ammonia volatilization and nitrogen utilization efficiency in response to urea application in rice fields of the Taihu Lake region, China. Pedosphere 17(5):639–645

    Article  CAS  Google Scholar 

  • Majumdar D (2003) The blue baby syndrome. Resonance 8:20–30. https://doi.org/10.1007/BF02840703

    Article  Google Scholar 

  • Majumdar K, Sanyal SK, Dutta SK, Satyanarayana T, Singh VK (2016) Nutrient mining: addressing the challenges to soil resources and food security. In: Singh U, Praharaj CS, Singh SS, Singh NP (eds) Biofortification of food crops. Springer, New Dehli, pp 177–198

    Chapter  Google Scholar 

  • Malyan SK, Bhatia A, Kumar SS, Fagodiya RK, Pugazhendhi A, Duc PA (2019) Mitigation of greenhouse gas intensity by supplementing with Azolla and moderating the dose of nitrogen fertilizer. Biocatal Agric Biotechnol 20:101266. https://doi.org/10.1016/j.bcab.2019.101266

    Article  Google Scholar 

  • Masclaux-Daubresse C, Reisdorf-Cren M, Pageau K, Lelandais M, Grandjean O, Kronenberger J, Valadier MH, Feraud M, Jouglet T, Suzuki A (2006) Glutamine synthetase-glutamate synthase pathway and glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in tobacco. Plant Physiol 140(2):444–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meena BL, Fagodiya RK, Prajapat K, Dotaniya ML, Kaledhonkar MJ, Sharma PC, Meena RS, Mitran T, Kumar S (2018) Legume green manuring: an option for soil sustainability. In: Meena R, Das A, Yadav G, Lal R (eds) Legumes for Soil Health and Sustainable Management. Springer, Singapore, pp 387–408

    Google Scholar 

  • McLaren RG, Cameron K (1996) In: 2nd (ed) Soil science: sustainable production and environmental protection. Oxford University Press, Auckland. ISBN 0-19-558345-0

    Google Scholar 

  • Modak JM (2008) Haber process for ammonia synthesis. Resonance 7(9):69–77

    Article  Google Scholar 

  • Mosier AR (2001) Exchange of gaseous nitrogen compounds between agricultural systems and the atmosphere. Plant Soil 228(1):17–27

    Article  CAS  Google Scholar 

  • Mosier A, Kroeze C, Nevison C, Oenema O, Seitzinger S, Van Cleemput O (1998) Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutr Cycl Agroecosyst 52:225–248

    Article  CAS  Google Scholar 

  • Mukherjee J, Mridha N, Mondal S, Chakraborty D, Kumar A (2018) Identifying suitable soil health indicators under variable climate scenarios: a ready reckoner for soil management. In: Bal S, Mukherjee J, Choudhury B, Dhawan A (eds) Advances in crop environment interaction. Springer, Singapore

    Google Scholar 

  • Nadelhoffer KJ, John DA, Jerry MM (1984) Seasonal patterns of ammonium and nitrate uptake in ten temperate forest ecosystems. Plant Soil 80(3):321–335

    Article  CAS  Google Scholar 

  • Olesen JE, Sorensen P, Thomsen IK, Eriksen J, Thomsen AG, Berntsen J (2004) Integrated nitrogen input systems in Denmark. In: Mosier AR, Syers JK, Freney JR (eds) Agriculture and the nitrogen cycle: assessing the impacts of fertilizer use on food production and the environment. Island Press, Washington, DC/Paris, pp 129–140

    Google Scholar 

  • Oliver JGJ, Bouwman AF, Van der Hoek KW, Berdowski JJM (1998) Global air emission inventories for anthropogenic sources of NOx, NH3 and N2O in 1990. Environ Pollut 102(S1):135–148

    Article  Google Scholar 

  • Parashar DC, Kulshreshtha UC, Sharma C (1998) Anthropogenic emissions of NOx, NH3 and N2O in India. Nutr Cycl Agroecosyst 52:255–259

    Article  CAS  Google Scholar 

  • Pathak H, Nedwell DB (2001) Strategies to reduce nitrous oxide emission from soil with fertiliser selection and nitrification inhibitor. Water Air Soil Pollut 129(4):217e228

    Google Scholar 

  • Pathak H, Aggarwal PK, Roetter R, Kalra N, Bandyopadhaya SK, Prasad S, Van Keulen H (2003) Modeling the quantitative evaluation of soil nutrient supply, nutrient use efficiency, and fertilizer requirements of wheat in India. Nutr Cycl Agroecosyst 65:105–113

    Article  CAS  Google Scholar 

  • Pathak H, Jain N, Bhatia A, Kumar A, Chatterjee D (2016) Improved nitrogen management: a key to climate change adaptation and mitigation. Indian J Fertil 12(11):51–162

    Google Scholar 

  • Peng S, Buresh RJ, Huang J, Zhong X, Zou Y, Yang J, Wang G, Liu Y, Hu R, Tang Q, Cui K, Zhang F, Dobermann A (2010) Improving nitrogen fertilization in rice by site-specific N management: a review. Agron Sustain Dev 30:649–656

    Article  CAS  Google Scholar 

  • Philippot L, Hallin S, Schloter M (2007) Ecology of denitrifying prokaryotes in agricultural soil. Adv Agron 96:249–305

    Article  CAS  Google Scholar 

  • Pieters JA (1927) Green manuring, principles and practice. Wiley, New York, p 365

    Google Scholar 

  • Postgate J (1998) Nitrogen fixation, 3rd edn. Cambridge University Press, Cambridge. Proc Indian Natl Sci Acad 80(2):359–378

    Google Scholar 

  • Poth M, Focht DD (1985) 15N kinetic analysis of N2O production by nitrosomonas europeae: an examination of nitrifier denitrification. Appl Environ Microbiol 49:1134–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad R (2008) Integrated plant nutrient supply (IPNS) for sustainable agriculture. Indian J Fertil 4(12):71–90

    Google Scholar 

  • Prasad R (2013) Fertiliser nitrogen, food security, health and the environment. Proc Indian Natl Sci Acad 79(4):997–1010. Spl. Issue, Part B

    Google Scholar 

  • Prosser JI, Nicol GW (2012) Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol 20:523–531

    Article  CAS  PubMed  Google Scholar 

  • Randall GW, Vetsch JA, HuVman JR (2003) Corn production on a subsurface drained Mollisol as affected by time of nitrogen application and nitrapyrin. Agron J 95:1213–1219

    Google Scholar 

  • Regmi AP, Ladha JK (2006) Enhancing productivity of rice-wheat system through integrated crop management in the Eastern-Gangetic plains of South Asia. J Crop Improv 15:147–170

    Article  Google Scholar 

  • Robertson GP, Paul EA, Harwood RR (2000) Greenhouse gases in intensive agriculture: contributions of individual gases to the radioactive forcing of the atmosphere. Science 289:1922–1925

    Article  CAS  PubMed  Google Scholar 

  • Sarkar MC, Banerjee NK, Rana DS, Uppal KS (1991) Field measurements of ammonia volatilization losses of N from urea applied to wheat. Fertil News 33:25–29

    Google Scholar 

  • Scheurwater I, Koren M, Lambers H, Atkin OK (2002) The contribution of roots and shoots to whole plant nitrate reduction in fast- and slow-growing grass species. J Exp Bot 53(374):1635–1642. https://doi.org/10.1093/jxb/erf008

    Article  CAS  PubMed  Google Scholar 

  • Schindler DW (2006) Recent advances in the understanding and management of eutrophication. Limnol Oceanogr 51:356–363

    Article  Google Scholar 

  • Seitzinger S, Harrison JA, Bohlke JK, Bouwman AF, Lowrance R, Peterson B, Tobias C, Drecht GV (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16(6):2064–2090

    Article  CAS  PubMed  Google Scholar 

  • Sharma C, Tiwari MK, Pathak H (2008) Estimates of emission and deposition of reactive nitrogenous species for India. Curr Sci 94:1439–1446

    CAS  Google Scholar 

  • Sharma A, Kumar A, Dhaka TS (2011) Impact on nodulation parameters of Cicer arietinum Trigonella and foenum-graecum of sugar factory effluent. Biochem Cell Arch 11(2):465–468

    Google Scholar 

  • Shine KP, Fuglestvedt JS, Hailemariam K, Stuber N (2005) Alternatives to the Global Warming Potential for Comparing Climate Impacts of Emissions of Greenhouse Gases. Clim Change 68:281–302

    Google Scholar 

  • Shaw LJ, Nicol GW, Smith Z, Fear J, Prosser JI, Baggs EM (2006) Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway. Environ Microbiol 8:214–222

    Article  CAS  PubMed  Google Scholar 

  • Shukla AK, Ladha JK, Singh VK, Dwivedi BS, Balasubramanian V, Gupta RK, Sharma SK, Singh Y, Pathak H, Pandey PS, Padre AT, Yadav RL (2004) Calibrating the leaf color chart for nitrogen management in different genotypes of rice and wheat in a systems perspective. Agron J 96:1606–1621

    Article  Google Scholar 

  • Singh VK, Dwivedi BS (2006) Yield and nitrogen use-efficiency in wheat, and soil fertility status as influenced by substitution of rice with pigeon pea in a rice-wheat cropping system. Aust J Exp Agric 46:1185–1194

    Article  Google Scholar 

  • Singh S, Kulshrestha UC (2014) Rural versus urban gaseous inorganic reactive nitrogen in the indo-Gangetic plains (IGP) of India. Environ Res Lett 9(12):125004

    Article  CAS  Google Scholar 

  • Singh B, Singh V, Singh Y, Thind HS, Kumar A, Gupta RK, Kaul A, Vashistha M (2012) Fixed-time adjustable dose site-specific nitrogen management in transplanted irrigated rice (Oryza sativa L.) in South Asia. Field Crop Res 126:63–69

    Article  Google Scholar 

  • Singh VK, Mishra RP, Rani M, Singh SK (2014) Water and nutrient interaction. I. Irrigated agriculture. In: Prasad R, Kumar D, Rana DS, Shivay YS, Tewatia RK (eds) Textbook of plant nutrient management. Indian Society of Agronomy, New Delhi, pp 249–267

    Google Scholar 

  • Smil V (2001) Enriching the earth. The MIT Press, Cambridge, MA

    Google Scholar 

  • Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24:201–207

    Article  PubMed  Google Scholar 

  • Snyder CS, Bruulsema TW, Jensen TL, Fixen PE (2009) Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric Ecosyst Environ 133:247–266

    Article  CAS  Google Scholar 

  • Spieck E, Hartwig C, McCormack I, Maixner F, Wagner M, Lipski A, Daims H (2006) Selective enrichment and molecular characterization of a previously uncultured Nitrospira-like bacterium from activated sludge. Environ Microbiol 8:405–415

    Article  CAS  PubMed  Google Scholar 

  • Wang GH, Dobermann A, Witt C, Sun QZ, Fu RX (2001) Performance of site-specific nutrient management for irrigated rice in Southeast China. Agron J 93:869–878

    Article  Google Scholar 

  • Wang GH, Sun Q, Fu R, Huang XH, Ding XH, Wu J, He YF, Dobermann A, Witt C (2004) Site-specific nutrient management in intensive irrigated rice systems of Zhejiang province, China. In: Dobermann A et al (eds) Increasing productivity of intensive rice systems through site-specific nutrient management. Science Publishers, Inc/International Rice Research Institute, Enfield/Los Baños, pp 243–263

    Google Scholar 

  • Weeks ME (1932) The discovery of the elements. IV. Three important gases. J Chem Educ 9(2):215

    Article  CAS  Google Scholar 

  • White RE (2005) Principles and practice of soil science: the soil as a natural resource, 4th edn. Blackwell Publishing, Malden, 384 pp. ISBN 0-632-06455-2

    Google Scholar 

  • Wrage N, Velthof GL, Beusichem ML, van Oenema O (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem 33:1723–1732

    Article  CAS  Google Scholar 

  • Xu G, Fan X, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Sugawara S, Riya S, Sagehashi M, Toyota K, Terada A, Hosomi M (2011) Effect of infiltration rate on nitrogen dynamics in paddy soil after high-load nitrogen application containing 15N tracer. Ecol Eng 37:685–692

    Article  Google Scholar 

Download references

Acknowledgements

The authors are much thankful to the ICAR-Central Soil Salinity Research Institute, Karnal; Indian Institute of Technology, Delhi; Jawaharlal Nehru University, New Delhi; and Central Muga Eri Research and Training Institute, Jorhat, Assam for providing necessary support for this publication.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fagodiya, R.K., Kumar, A., Kumari, S., Medhi, K., Shabnam, A.A. (2020). Role of Nitrogen and Its Agricultural Management in Changing Environment. In: Naeem, M., Ansari, A., Gill, S. (eds) Contaminants in Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-41552-5_12

Download citation

Publish with us

Policies and ethics