Skip to main content

Introducing Model-Based Instruction for SSI Teaching in Primary Pre-service Teacher Education

  • Chapter
  • First Online:
Science Teacher Education for Responsible Citizenship

Part of the book series: Contemporary Trends and Issues in Science Education ((CTISE,volume 52))

Abstract

In the present study, we designed and implemented a research-based initial training for primary-school teachers from the scientific practices framework. The aim is to help teachers understand what Socio-Scientific Issues (SSI) are and to be able to teach them, in addition to helping pupils learn key scientific ideas. Under the constant guidance and support of teacher educators, three pre-service teachers (PTs) designed and implemented SSI lesson plans in primary schools, and reflected on the process. Results show that the SSI context facilitates the development of more innovative lesson plans, as PTs’ final lesson plans improved from initial designs in several aspects (i.e. the problematization of the topic, inclusion of scientific content, or the use of formative assessment). Pre-service teachers were able to teach successful SSI lessons and they were aware of their learning process throughout the training, although important challenges arose during the design and implementation of the SSI activities. The most relevant were the difficulties of including scientific content and the difficulty to have a balanced dialogic role in a manner that was sufficiently but not too guided. Above all, PTs were able to critically reflect on their teaching practices and think of new and mature ways to overcome these important challenges, resulting in important professional development during their initial training in SSI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The PreSEES project is funded by the EU (Comenius/Lifelong Learning) with reference 527,602-LLP-1-2012-1-CY-COMENIUS-CMP from 2012 to 2014.

  2. 2.

    We use ‘didactic knowledge’ here in the sense given by the continental European tradition of science education, which is roughly equivalent to ‘pedagogic knowledge’ but with an emphasis on the specificities of the science educational field: what and how to teach science education instead of how to teach any subject.

References

  • Adúriz-Bravo, A. (2008). Un modelo de ciencia para el análisis epistemológico de la didáctica de las ciencias naturales. Perspectivas Educativas, 1, 13–39.

    Google Scholar 

  • Adúriz-Bravo, A., Bonan, L., Galli, L. G., Chion, A. R., & Meinardi, E. (2005). Scientific argumentation in pre-service biology teacher education. Eurasia Journal of Mathematics, Science and Technology Education, 1(1), 76–83.

    Article  Google Scholar 

  • Albe, V. (2008). Students’ positions and considerations of scientific evidence about a controversial socioscientific issue. Science & Education, 17(8–9), 805–827.

    Article  Google Scholar 

  • Andriessen, J. (2006). Arguing to learn. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 443–459). Cambridge: Cambridge University Press.

    Google Scholar 

  • Avraamidou, L., & Zembal-Saul, C. (2010). In search of well-started beginning science teachers: Insights from two first-year elementary teachers. Journal of Research in Science Teaching, 47(6), 661–686.

    Article  Google Scholar 

  • Berland, L. K., & Reiser, B. J. (2011). Classroom communities’ adaptations of the practice of scientific argumentation. Science Education, 95, 191–216.

    Article  Google Scholar 

  • Dawson, V. M., & Venville, G. (2010). Teaching strategies for developing students’ argumentation skills about Socioscientific issues in high school genetics. Research in Science Education, 40(2), 133–148.

    Article  Google Scholar 

  • Díaz-Moreno, N., & Jiménez-liso, M. R. (2012). Las controversias sociocientíficas: temáticas e importancia para la educación científica. Eureka, 9(1), 54–70.

    Article  Google Scholar 

  • Dolan, T. J., Nichols, B. H., & Zeidler, D. L. (2009). Using socioscientific issues in primary classrooms. Journal of Elementary Science Education, 21(3), 1–12.

    Article  Google Scholar 

  • Domènech, A. M., & Márquez, C. (2012). Students’ opinions about a SSI: Perspectives refered in their arguments about bears’ reintroduction. In C. Bruguière, A. Tiberghien, & P. Clément (Eds.), E-book proceedings of the ESERA 2011 conference (pp. 31–38). France: Lyon.

    Google Scholar 

  • Duschl, R. A., & Grandy, R. E. (2008). Teaching scientific inquiry: Recommendations for research and implementation. Rotterdam: Sense Publishers.

    Book  Google Scholar 

  • Erduran, S., & Jiménez-Aleixandre, M. P. (2007). Argumentation in science education. Perspectives from classroom-based research. New York: Springer.

    Google Scholar 

  • Evagorou, M., Jiménez-aleixandre, M. P., & Osborne, J. (2012). “Should we kill the Grey squirrels?” a study exploring students’ justifications and decision-making. International Journal of Science Education, 34(3), 401–428.

    Article  Google Scholar 

  • Evagorou, M., Albe, V., Angelides, P., Couso, D., Chirlesan, G., Evans, R., et al. (2014). Preparing pre-service science teachers to teach socio-scientific (SSI) argumentation. Science Teacher Education, 69, 39–47.

    Google Scholar 

  • Garrido, A., & Couso, D. (2015). Socio-scientific issues (SSI) in initial training of primary school teachers: Pre-service teachers’ conceptualization of SSI and appreciation of the value of teaching SSI. Procedia – Social and Behavioral Sciences, 196, 80–88.

    Article  Google Scholar 

  • Garrido Espeja, A., & Couso Lagarón, D. (2014). Les controvèrsies socio-científiques (SSI) en la formació inicial de mestres de primària: Anàlisi de l’aprenentatge, l’auto-eficàcia i l’aplicació real a l’aula. In Special issue for the VIII international conference on university teaching and innovation CIDUI 2014 (Vol. 2. pp. 1–10).

    Google Scholar 

  • Harlen, W. (2010). Principles and big ideas of science education. Hants: Gosport.

    Google Scholar 

  • Iordanou, K., & Constantinou, C. P. (2014). Developing pre-service teachers ’ evidence-based argumentation skills on socio-scientific issues. Learning and Instruction, 34, 42–57.

    Article  Google Scholar 

  • Izquierdo, M., Espinet, M., García, M. P., Pujol, R. M., & Sanmartí, N. (1999). Caracterización y fundamentación de la ciencia escolar. Enseñanza de Las Ciencias.

    Google Scholar 

  • Jiménez-Aleixandre, M. P. (2010). 10 ideas clave. Competencias en argumentación y uso de pruebas. Barcelona: GRAO.

    Google Scholar 

  • Jiménez-Aleixandre, M. P., Bugallo Rodríguez, A., & Duschl, R. A. (2000). “Doing the lesson” or “doing science”: Argument in high school genetics. Science Education, 84(6), 757–792.

    Article  Google Scholar 

  • Jiménez-Aleixandre, M. P., Caamaño, A., Oñorbe, A., Pedrinaci, E., & de Pro, A. (2003). Enseñar ciencias. Barcelona: GRAO.

    Google Scholar 

  • Kolsto, S. D. (2001). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socioscientific issues. Science Education, 85(1), 291–310.

    Article  Google Scholar 

  • Martínez Chico, M., López-Gay Lucio-Villegas, R., & Jiménez Liso, M. R. (2014). ¿Es posible diseñar un programa formativo para enseñar ciencias por Indagación basada en Modelos en la formación inicial de maestros? Fundamentos, exigencias y aplicación. Didáctica de Las Ciencias Experimentales Y Sociales, 4379(28), 153–173.

    Google Scholar 

  • Michaels, S., Shouse, A. W., & Schweingruber, H. A. (2008). Ready, set, science! Washington, DC: The National Academies Press.

    Google Scholar 

  • Mortimer, E. F., & Scott, P. H. (2003). Meaning making in secondary science classrooms (McGraw-Hill Education, Ed.). Maidenhead: Open University Press.

    Google Scholar 

  • NGSS Lead States. (2013). Next generation science standards: For States, by States. Washington, DC: National Academies Press

    Google Scholar 

  • Nielsen, J. A. (2012). Science in discussions: An analysis of the use of science content in socioscientific discussions. Science Education, 96(3), 428–456.

    Article  Google Scholar 

  • NRC. (2007). Taking science to school: Learning and teaching science in grades K-8. Board on Science Education, Center for Education. Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.

    Google Scholar 

  • NRC. (2012). A framework for K-12 science education. Practices, crosscutting concepts and core ideas. Washington, DC: The National Academies Press.

    Google Scholar 

  • Osborne, J. (2010). Arguing to learn in science: The role of collaborative, critical discourse. Science, 328, 463–466.

    Article  Google Scholar 

  • Osborne, J. (2014). Teaching scientific practices: Meeting the challenge of change. Journal of Science Teacher Education, 25(2), 177–196.

    Article  Google Scholar 

  • Osborne, J., & Dillon, J. (2008). Science education in Europe: Critical reflections. London: Nuffield Foundation.

    Google Scholar 

  • Passmore, C. M., & Svoboda, J. (2012). Exploring opportunities for argumentation in modelling classrooms. International Journal of Science Education, 34(10), 1535–1554.

    Article  Google Scholar 

  • Reiser, B. J. (2013). What professional development strategies are needed for successful implementation of the next generation science standards? Invitational Research Symposium on Science Assessment.

    Google Scholar 

  • Ryu, S., & Sandoval, W. A. (2012). Improvements to elementary children’s epistemic understanding from sustained argumentation. Science Education, 96(3), 488–526.

    Article  Google Scholar 

  • Sadler, T. D., & Fowler, S. R. (2006). A threshold model of content knowledge transfer for socioscientific argumentation. Science Education, 90, 986–1004. https://doi.org/10.1002/sce.20165.

    Article  Google Scholar 

  • Sadler, T. D., & Zeidler, D. L. (2005). The significance of content knowledge for informal reasoning regarding socioscientific issues: Applying genetics knowledge to genetic engineering issues. Science Education, 89(1), 71–93.

    Article  Google Scholar 

  • Sadler, T. D., & Zeidler, D. L. (2009). Scientific literacy, PISA, and socioscientific discourse: Assessment for progressive aims of science education. Journal of Research in Science Teaching, 46(8), 909–921.

    Article  Google Scholar 

  • Sadler, T. D., Romine, W. L., & Topçu, M. S. (2016). Learning science content through socio-scientific issues-based instruction: A multi-level assessment study. International Journal of Science Education, 38(10), 1622–1635.

    Article  Google Scholar 

  • Sanmartí, N. (2003). Aprendre ciències tot aprenent a escriure ciencia (Edicions 62, Ed.). Barcelona.

    Google Scholar 

  • Shulman, L. S. (1986). Paradigms and research programs in the study of teaching: A contemporary perspective. In M. C. Wittrock (Ed.), Third handbook of research on teaching. New York: Macmillan.

    Google Scholar 

  • Wu, Y. T., & Tsai, C. C. (2011). High school students’ informal reasoning regarding a socio-scientific issue, with relation to scientific epistemological beliefs and cognitive structures. International Journal of Science Education, 33(3), 371–400.

    Article  Google Scholar 

  • Zeidler, D. L., & Nichols, B. H. (2009). Socioscientific issues: Theory and practice. Journal of Elementary Science Education, 21(2), 49–58.

    Article  Google Scholar 

  • Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A research-based framework for socioscientific issues education. Science Education, 89(3), 357–377.

    Article  Google Scholar 

  • Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garrido Espeja, A., Couso, D. (2020). Introducing Model-Based Instruction for SSI Teaching in Primary Pre-service Teacher Education. In: Evagorou, M., Nielsen, J.A., Dillon, J. (eds) Science Teacher Education for Responsible Citizenship. Contemporary Trends and Issues in Science Education, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-030-40229-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40229-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40228-0

  • Online ISBN: 978-3-030-40229-7

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics