Skip to main content

Culturable Endophytic Fungal Communities Associated with Cereal Crops and Their Role in Plant Growth Promotion

  • Chapter
  • First Online:
Plant Microbiomes for Sustainable Agriculture

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 25))

Abstract

Many microorganisms are known to live in association with plants. Endophytes are the microorganisms that live in the internal tissues of plants. Endophytic fungi hold great importance for the roles that they play in association with the host plants. Endophytes are known to promote the growth of the host plants by various activities such as detoxification of toxic compounds, protection against pathogens, and production of plant growth promoting hormones. Many biotechnologically important metabolites are also produced by endophytes such as anticancer and antimicrobial compounds. There is a rich diversity of endophytes that needs to be explored for biotechnological purposes. This chapter focuses on the endophytic fungi of cereal crops and the roles they play.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adhikari P, Pandey A (2019) Phosphate solubilization potential of endophytic fungi isolated from Taxus wallichiana Zucc. roots. Rhizosphere 9:2–9

    Article  Google Scholar 

  • Ainsworth GC (2008) Ainsworth & Bisby’s dictionary of the fungi. Cabi, Kew

    Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66

    Article  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    Article  PubMed  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274

    Article  Google Scholar 

  • Atugala D, Deshappriya N (2015) Effect of endophytic fungi on plant growth and blast disease incidence of two traditional rice varieties. J Natl Sci Found Sri Lanka 43:173–187

    Article  Google Scholar 

  • Bai LY, Weng JR, Lo WJ, Yeh SP, Wu CY, Wang CY et al (2012) Inhibition of Hedgehog signaling induces monocytic differentiation of HL-60 cells. Leuk Lymphoma 53:1196–1202

    Article  CAS  PubMed  Google Scholar 

  • Bandara W, Seneviratne G, Kulasooriya SA (2006) Interactions among endophytic bacteria and fungi: effects and potentials. J Biosci 31:645–650

    Article  CAS  PubMed  Google Scholar 

  • Bartholdy B, Berreck M, Haselwandter K (2001) Hydroxamate siderophore synthesis by Phialocephala fortinii, a typical dark septate fungal root endophyte. Biometals 14:33–42

    Article  CAS  PubMed  Google Scholar 

  • Behera B, Yadav H, Singh S, Mishra R, Sethi B, Dutta S et al (2017) Phosphate solubilization and acid phosphatase activity of Serratia sp. isolated from mangrove soil of Mahanadi river delta, Odisha. India. J Genet Eng Biotechnol 15:169–178

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229

    Article  CAS  PubMed  Google Scholar 

  • Bischoff KM, Wicklow DT, Jordan DB, de Rezende ST, Liu S, Hughes SR et al (2009) Extracellular hemicellulolytic enzymes from the maize endophyte Acremonium zeae. Curr Microbiol 58:499–503

    Article  CAS  PubMed  Google Scholar 

  • Boberg JB, Ihrmark K, Lindahl BD (2011) Decomposing capacity of fungi commonly detected in Pinus sylvestris needle litter. Fungal Ecol 4:110–114

    Article  Google Scholar 

  • Bokati D, Herrera J, Poudel R (2016) Soil influences colonization of root-associated fungal endophyte communities of maize, wheat, and their progenitors. J Mycol 2016:9

    Google Scholar 

  • Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braz SCdM, Motta CMdS, Massa DMdL, Neves RP, Magalhães OMC (2009) Viabilidade, confirmação taxonômica e detecção enzimática de espécies de Acremonium preservadas sob óleo mineral na Coleção de Culturas University Recife Mycology. Rev Soc Bras Med Trop 42:63–66

    Article  PubMed  Google Scholar 

  • Burdsall HH Jr, Dorworth EB (1994) Preserving cultures of wood-decaying Basidiomycotina using sterile distilled water in cryovials. Mycologia 86:275–280

    Article  Google Scholar 

  • Camehl I, Sherameti I, Venus Y, Bethke G, Varma A, Lee J et al (2010) Ethylene signalling and ethylene-targeted transcription factors are required to balance beneficial and nonbeneficial traits in the symbiosis between the endophytic fungus Piriformospora indica and Arabidopsis thaliana. New Phytol 185:1062–1073

    Article  CAS  PubMed  Google Scholar 

  • Card SD, Hume DE, Roodi D, McGill CR, Millner JP, Johnson RD (2015) Beneficial endophytic microorganisms of Brassica–a review. Biol Control 90:102–112

    Article  Google Scholar 

  • Carvalho CR, Gonçalves VN, Pereira CB, Johann S, Galliza IV, Alves TM et al (2012) The diversity, antimicrobial and anticancer activity of endophytic fungi associated with the medicinal plant Stryphnodendron adstringens (Mart.) Coville (Fabaceae) from the Brazilian savannah. Symbiosis 57:95–107

    Article  Google Scholar 

  • Chen Y, Peng Y, Dai C-C, Ju Q (2011) Biodegradation of 4-hydroxybenzoic acid by Phomopsis liquidambari. Appl Soil Ecol 51:102–110

    Article  Google Scholar 

  • Chen Y, Ren C-G, Yang B, Peng Y, Dai C-C (2013) Priming effects of the endophytic fungus Phomopsis liquidambari on soil mineral N transformations. Microb Ecol 65:161–170

    Article  CAS  PubMed  Google Scholar 

  • Clement S, Elberson L, Bosque-Pérez N, Schotzko D (2005) Detrimental and neutral effects of wild barley–Neotyphodium fungal endophyte associations on insect survival. Entomol Exp Appl 114:119–125

    Article  Google Scholar 

  • Clement S, Wilson AD, Lester D, Davitt C (1997) Fungal endophytes of wild barley and their effects on Diuraphis noxia population development. Entomol Exp Appl 82:275–281

    Article  Google Scholar 

  • Cohen SD (2004) Endophytic-host selectivity of Discula umbrinella on Quercus alba and Quercus rubra characterized by infection, pathogenicity and mycelial compatibility. Eur J Plant Pathol 110:713–721

    Article  Google Scholar 

  • Crowley DE (2006) Microbial siderophores in the plant rhizosphere. In: Barton LL, Abadia J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Netherlands, Dordrecht, pp 169–198. https://doi.org/10.1007/1-4020-4743-6_8

    Chapter  Google Scholar 

  • Cui J-l, Guo S-x, Xiao P-g (2011) Antitumor and antimicrobial activities of endophytic fungi from medicinal parts of Aquilaria sinensis. J Zhejiang Univ Sci B 12:385–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dequn Z (2001) Host-specificity, host-exclusivity, and host-recurrence in saprobic fungi. Mycol Res 105:1449–1457

    Article  Google Scholar 

  • Ding L-J, Cui H-L, Nie S-A, Long X-E, Duan G-L, Zhu Y-G (2019) Microbiomes inhabiting rice roots and rhizosphere. FEMS Microbiol Ecol 95:fiz040

    Google Scholar 

  • Diogo HC, Sarpieri A, Pires MC (2005) Fungi preservation in distilled water. An Bras Dermatol 80:591–594

    Article  Google Scholar 

  • Dreyfuss M, Chapela IH (1994) Potential of fungi in the discovery of novel, low-molecular weight pharmaceuticals. In: Gullo VP (ed) Discovery of novel natural products with therapeutic potential. Elsevier, pp 49–80

    Google Scholar 

  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Freire AKL, dos Santos Bentes A, de Lima Sampaio I, de Lima AM, Botineli LF, da Rocha LC et al (2016) Availability and morphological characteristics of endophytic fungi held in different methods of preservation. Sci Res Essays 11:76–79

    Article  Google Scholar 

  • Gamboa MA, Bayman P (2001) Communities of endophytic fungi in leaves of a tropical timber tree (Guarea guidonia: Meliaceae) 1. Biotropica 33:352–360

    Article  Google Scholar 

  • Girão MD, Prado MRd, Brilhante RSN, Cordeiro RA, Monteiro AJ, Sidrim JJC et al (2004) Viabilidade de cepas de Malassezia pachydermatis mantidas em diferentes métodos de conservação. Rev Soc Bras Med Trop 37:229–233

    Article  PubMed  Google Scholar 

  • Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem 39:1968–1977

    Article  CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee W, Kloepper J (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Hamayun M, Hussain A, Khan SA, Kim H-Y, Khan AL, Waqas M et al (2017) Gibberellins producing endophytic fungus Porostereum spadiceum AGH786 rescues growth of salt affected soybean. Front Microbiol 8:686

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrera-Medina MJ, Steinkellner S, Vierheilig H, Ocampo Bote JA, García Garrido JM (2007) Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol 175:554–564

    Article  CAS  PubMed  Google Scholar 

  • Herrera J, Poudel R, Bokati D (2013) Assessment of root-associated fungal communities colonizing two species of tropical grasses reveals incongruence to fungal communities of North American native grasses. Fungal Ecol 6:65–69

    Article  Google Scholar 

  • Huang W, Cai Y, Hyde K, Corke H, Sun M (2008) Biodiversity of endophytic fungi associated with 29 traditional Chinese medicinal plants. Fungal Divers 33:61–75

    Google Scholar 

  • Huang Y, Wang J, Li G, Zheng Z, Su W (2001) Antitumor and antifungal activities in endophytic fungi isolated from pharmaceutical plants Taxus mairei, Cephalataxus fortunei and Torreya grandis. FEMS Immunol Med Microbiol 31:163–167

    Article  CAS  PubMed  Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal M, Ashraf M (2013) Gibberellic acid mediated induction of salt tolerance in wheat plants: growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environ Exp Bot 86:76–85

    Article  CAS  Google Scholar 

  • Johnson NC, Graham J, Smith F (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol 135:575–585

    Article  Google Scholar 

  • Joshi S, Sahgal M, Sahu S, Prakash A (2018) Fungal endophytes and their secondary metabolites: role in sustainable agriculture. In: Gehlot P, Singh J (eds) Fungi and their role in sustainable development: current perspectives. Springer, Singapore, Singapore, pp 121–146. https://doi.org/10.1007/978-981-13-0393-7_8

    Chapter  Google Scholar 

  • Jumpponen A (2001) Dark septate endophytes–are they mycorrhizal? Mycorrhiza 11:207–211

    Article  Google Scholar 

  • Kajula M, Tejesvi MV, Kolehmainen S, Mäkinen A, Hokkanen J, Mattila S et al (2010) The siderophore ferricrocin produced by specific foliar endophytic fungi in vitro. Fungal Biol 114:248–254

    Article  CAS  PubMed  Google Scholar 

  • Karthik C, Oves M, Thangabalu R, Sharma R, Santhosh S, Arulselvi PI (2016) Cellulosimicrobium funkei-like enhances the growth of Phaseolus vulgaris by modulating oxidative damage under Chromium (VI) toxicity. J Adv Res 7:839–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavroulakis N, Ntougias S, Zervakis GI, Ehaliotis C, Haralampidis K, Papadopoulou KK (2007) Role of ethylene in the protection of tomato plants against soil-borne fungal pathogens conferred by an endophytic Fusarium solani strain. J Exp Bot 58:3853–3864

    Article  CAS  PubMed  Google Scholar 

  • Khan AL, Hamayun M, Kang S-M, Kim Y-H, Jung H-Y, Lee J-H et al (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan AL, Waqas M, Khan AR, Hussain J, Kang S-M, Gilani SA et al (2013) Fungal endophyte Penicillium janthinellum LK5 improves growth of ABA-deficient tomato under salinity. World J Microbiol Biotechnol 29:2133–2144

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Zaidi A, Ahmad E (2014) Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In: Khan MS, Zaidi A, Musarrat J (eds) Phosphate solubilizing microorganisms. Springer International Publishing, Cham, pp 31–62. https://doi.org/10.1007/978-3-319-08216-5_2

    Google Scholar 

  • Kia SH, Jurkechova M, Glynou K, Piepenbring M, Maciá-Vicente JG (2017) The effects of fungal root endophytes on plant growth are stable along gradients of abiotic habitat conditions. FEMS Microbiol Ecol 94

    Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Kumar A, Meena VS et al (2019a) Rhizospheric Microbiomes: Biodiversity, Mechanisms of Plant Growth Promotion, and Biotechnological Applications for Sustainable Agriculture. In: Kumar A, Meena VS (eds) Plant growth promoting rhizobacteria for agricultural sustainability: from theory to practices. Springer, Singapore, Singapore, pp 19–65. https://doi.org/10.1007/978-981-13-7553-8_2

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA et al (2019b) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi: volume 2: perspective for value-added products and environments. Springer International Publishing, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Google Scholar 

  • Krohn K, Biele C, Drogies K, Steingrover K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Eur J Org Chem 14:2331–2336

    Article  Google Scholar 

  • Kumar A, Chaturvedi AK, Yadav K, Arunkumar KP, Malyan SK, Raja P et al (2019) Fungal phytoremediation of heavy metal-contaminated resources: current scenario and future prospects. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi: volume 3: perspective for sustainable environments. Springer International Publishing, Cham, pp 437–461. https://doi.org/10.1007/978-3-030-25506-0_18

    Chapter  Google Scholar 

  • Kumar DSS, Hyde KD (2004) Biodiversity and tissue-recurrence of endophytic fungi in Tripterygium wilfordii. Fungal Diversity

    Google Scholar 

  • Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798

    Article  CAS  PubMed  Google Scholar 

  • Lacaz CdS, Porto E, Martins JEC (1991) Micologia médica: fungos, actinomicetos e algas de interesse médico. Rev Inst Med Trop São Paulo 33:332–332

    Article  Google Scholar 

  • Ladha J, Reddy P (2003) Nitrogen fixation in rice systems: state of knowledge and future prospects. Plant Soil 252:151–167

    Article  CAS  Google Scholar 

  • Larran S, Perelló A, Simón MR, Moreno V (2007) The endophytic fungi from wheat (Triticum aestivum L.). World J Microbiol Biotechnol 23:565–572

    Article  Google Scholar 

  • Li H-Y, Wei D-Q, Shen M, Zhou Z-P (2012) Endophytes and their role in phytoremediation. Fungal Divers 54:11–18

    Article  Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugtenberg BJ, Caradus JR, Johnson LJ (2016) Fungal endophytes for sustainable crop production. FEMS Microbiol Ecol 92

    Article  PubMed  CAS  Google Scholar 

  • Awika JM (2011) Major cereal grains production and use around the world. Advances in cereal science: implications to food processing and health promotion, vol 1089, pp 1–13. https://doi.org/10.1021/bk-2011-1089.ch001

    Google Scholar 

  • Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940

    Article  CAS  Google Scholar 

  • Malyan SK, Kumar A, Baram S, Kumar J, Singh S, Kumar SS et al (2019) Role of fungi in climate change abatement through carbon sequestration. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi: volume 3: perspective for sustainable environments. Springer International Publishing, Cham, pp 283–295. https://doi.org/10.1007/978-3-030-25506-0_11

    Chapter  Google Scholar 

  • McGonigle TP, Miller MH, Young D (1999) Mycorrhizae, crop growth, and crop phosphorus nutrition in maize-soybean rotations given various tillage treatments. Plant Soil 210:33–42

    Article  CAS  Google Scholar 

  • Mehta P, Sharma R, Putatunda C, Walia A (2019) Endophytic fungi: role in phosphate solubilization. In: Singh BP (ed) Advances in endophytic fungal research. Springer International Publishing, Cham, pp 183–209. https://doi.org/10.1007/978-3-030-03589-1_9

    Chapter  Google Scholar 

  • Mirlohi A, Sabzalian MR, Khayyam Nekouei M (2004) Endophytic fungi, characteristics and their potential for genetic manipulation. Iran J Biotechnol 2:75–83

    CAS  Google Scholar 

  • Murphy B, Doohan F, Hodkinson T (2018) From concept to commerce: developing a successful fungal endophyte inoculant for agricultural crops. J Fungi 4:24

    Article  Google Scholar 

  • Naik BS, Shashikala J, Krishnamurthy Y (2009) Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiol Res 164:290–296

    Article  CAS  PubMed  Google Scholar 

  • Neilands J, Leong SA (1986) Siderophores in relation to plant growth and disease. Annu Rev Plant Physiol 37:187–208

    Article  CAS  Google Scholar 

  • Ngachan S, Mohanty A, Pattanayak A (2011) Status paper on rice in North East India. ICAR Research Complex for NEH Region, Rice Knowledge Management Portal (RKMP) Directorate of Rice Research

    Google Scholar 

  • O’sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Mol Biol Rev 56:662–676

    Google Scholar 

  • Onions AH (1971) Chapter IV preservation of fungi. In: C Booth (ed) Methods in microbiology, vol 4. Elsevier, pp 113–151

    Google Scholar 

  • Orole O, Adejumo T (2009) Activity of fungal endophytes against four maize wilt pathogens. Afr J Microbiol Res 3:969–973

    Google Scholar 

  • Papageorgiou M, Skendi A (2018) 1-Introduction to cereal processing and by-products. In: Galanakis CM (ed) Sustainable recovery and reutilization of cereal processing by-products. Woodhead Publishing, pp 1–25. https://doi.org/10.1016/B978-0-08-102162-0.00001-0

    Google Scholar 

  • Patle P, Navnage N, Ramteke P (2018) Endophytes in plant system: roles in growth promotion, mechanism and their potentiality in achieving agriculture sustainability. Int J Chem Stud 6:270–274

    Google Scholar 

  • Potshangbam M, Devi SI, Sahoo D, Strobel GA (2017) Functional characterization of endophytic fungal community associated with Oryza sativa L. and Zea mays L. Front Microbiol 8:325

    Google Scholar 

  • Pourkheirandish M, Komatsuda T (2007) The importance of Barley genetics and domestication in a global perspective. Ann Bot 100:999–1008

    Article  PubMed  PubMed Central  Google Scholar 

  • Prathyusha P, Rajitha Sri A, Ashokvardhan T, Satya Prasad K (2015) Antimicrobial and siderophore activity of the endophytic fungus Acremonium sclerotigenum inhabiting Terminalia bellerica Roxb. Int J Pharm Sci Rev Res 30:84–87

    Google Scholar 

  • Priyadarshani C, Deshappriya N, Sandamali T (2018) Effect of fungal endophytes of rice variety Ld 368 on growth and brown spot disease incidence of rice. Trop Plant Res 5(3):292–302

    Article  Google Scholar 

  • Radji M, Sumiati A, Rachmayani R, Elya B (2011) Isolation of fungal endophytes from Garcinia mangostana and their antibacterial activity. Afr J Biotechnol 10:103–107

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN et al (2019a) Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi, vol 1. Diversity and enzymes perspectives. Springer, Switzerland, pp 1–62

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V et al (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

    Chapter  Google Scholar 

  • Rana KL, Kour D, Yadav AN (2018) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:1–30

    Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298:1581–1581

    Article  CAS  PubMed  Google Scholar 

  • Rees RM, Baddeley JA, Bhogal A, Ball BC, Chadwick DR, Macleod M et al (2013) Nitrous oxide mitigation in UK agriculture. Soil Sci Plant Nutr 59:3–15

    Article  CAS  Google Scholar 

  • Ripa FA, Cao WD, Tong S, Sun JG (2019) Assessment of plant growth promoting and abiotic stress tolerance properties of wheat endophytic fungi. BioMed Res Int

    Google Scholar 

  • Rodrı́guez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Rodriguez R, White J Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Saikkonen K, Ruokolainen K, Huitu O, Gundel PE, Piltti T, Hamilton CE et al (2013) Fungal endophytes help prevent weed invasions. Agric Ecosyst Environ 165:1–5

    Article  Google Scholar 

  • Sanders IR (2004) Plant and arbuscular mycorrhizal fungal diversity–are we looking at the relevant levels of diversity and are we using the right techniques? New Phytol 164:415–418

    Article  Google Scholar 

  • Santamaría J, Bayman P (2005) Fungal epiphytes and endophytes of coffee leaves (Coffea arabica). Microb Ecol 50:1–8

    Article  PubMed  Google Scholar 

  • Santos-Medellín C, Edwards J, Liechty Z, Nguyen B, Sundaresan V (2017) Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. MBio 8:e00764–00717

    Article  PubMed  PubMed Central  Google Scholar 

  • Sapkota R, Knorr K, Jørgensen LN, O’Hanlon KA, Nicolaisen M (2015) Host genotype is an important determinant of the cereal phyllosphere mycobiome. New Phytol 207:1134–1144

    Article  CAS  PubMed  Google Scholar 

  • Sarwar MH, Sarwar MF, Sarwar M, Qadri NA, Moghal S (2013) The importance of cereals (Poaceae: Gramineae) nutrition in human health: a review. J Cereals Oilseeds 4:32–35

    Article  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Römmert A-K, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  • Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T et al (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant-Microbe Interact 25:28–36

    Article  CAS  PubMed  Google Scholar 

  • Shah S, Shrestha R, Maharjan S, Selosse M-A, Pant B (2019) Isolation and characterization of plant growth-promoting endophytic fungi from the roots of Dendrobium moniliforme. Plants 8:5

    Article  CAS  Google Scholar 

  • Sharma S, Kour D, Rana KL, Dhiman A, Thakur S, Thakur P et al (2019) Trichoderma: biodiversity, ecological significances, and industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi: volume 1: diversity and enzymes perspectives. Springer International Publishing, Cham, pp 85–120. https://doi.org/10.1007/978-3-030-10480-1_3

    Chapter  Google Scholar 

  • Shweta S, Zuehlke S, Ramesha B, Priti V, Kumar PM, Ravikanth G et al (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71:117–122

    Article  CAS  PubMed  Google Scholar 

  • Smith D (1998) The use of cryopreservation in the ex-situ conservation of fungi. Cryo-letters 19:79–90

    Google Scholar 

  • Smith D, Onions AH (1994) The preservation and maintenance of living fungi, vol Ed. 2. CAB international

    Google Scholar 

  • Spagnoletti FN, Tobar N, Di Pardo AF, Chiocchio VM, Lavado RS (2017) Dark septate endophytes present different potential to solubilize calcium, iron and aluminum phosphates. Appl Soil Ecol 111:25–32

    Article  Google Scholar 

  • Strobel G, Yang X, Sears J, Kramer R, Sidhu RS, Hess W (1996) Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology 142:435–440

    Article  CAS  PubMed  Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, research perspectives. Springer, India, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7

    Chapter  Google Scholar 

  • Sumarah MW, Puniani E, Blackwell BA, Miller JD (2008) Characterization of polyketide metabolites from foliar endophytes of Picea glauca. J Nat Prod 71:1393–1398

    Article  CAS  PubMed  Google Scholar 

  • Tanimoto E (2005) Regulation of root growth by plant hormones—roles for auxin and gibberellin. Crit Rev Plant Sci 24:249–265

    Article  CAS  Google Scholar 

  • Tao G, Liu Z, Hyde K, Lui X, Yu Z (2008) Whole rDNA analysis reveals novel and endophytic fungi in Bletilla ochracea (Orchidaceae). Fungal Divers 33:101–112

    Google Scholar 

  • Tarafdar J, Gharu A (2006) Mobilization of organic and poorly soluble phosphates by Chaetomium globosum. Appl Soil Ecol 32:273–283

    Article  Google Scholar 

  • Tian X, Cao L, Tan H, Zeng Q, Jia Y, Han W et al (2004) Study on the communities of endophytic fungi and endophytic actinomycetes from rice and their antipathogenic activities in vitro. World J Microbiol Biotechnol 20:303–309

    Article  Google Scholar 

  • Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206

    Article  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M et al (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci 102:13386–13391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Brown H, Crowley D, Szaniszlo P (1993) Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant, Cell Environ 16:579–585

    Article  CAS  Google Scholar 

  • Waqas M, Khan AL, Kamran M, Hamayun M, Kang S-M, Kim Y-H et al (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss M, Sýkorová Z, Garnica S, Riess K, Martos F, Krause C et al (2011) Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes. PLoS ONE 6:e16793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu G, Yang S, Meng L, Wang B-G (2018) The plant hormone abscisic acid regulates the growth and metabolism of endophytic fungus Aspergillus nidulans. Sci Rep 8:6504. https://doi.org/10.1038/s41598-018-24770-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AN (2017) Agriculturally important microbiomes: biodiversity and multifarious PGP attributes for amelioration of diverse abiotic stresses in crops for sustainable agriculture. Biomed J Sci Tech Res 1:1–4

    Google Scholar 

  • Yadav AN (2018) Biodiversity and biotechnological applications of host-specific endophytic fungi for sustainable agriculture and allied sectors. Acta Sci Microbiol 1:01–05

    Google Scholar 

  • Yadav AN (2019a) Endophytic fungi for plant growth promotion and adaptation under abiotic stress conditions. Acta Sci Agric 3:91–93

    CAS  Google Scholar 

  • Yadav AN (2019b) Fungal white biotechnology: conclusion and future prospects. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi: volume 3: perspective for sustainable environments. Springer International Publishing, Cham, pp 491–498. https://doi.org/10.1007/978-3-030-25506-0_20

    Chapter  Google Scholar 

  • Yadav AN, Kumar V, Prasad R, Saxena AK, Dhaliwal HS (2018a) Microbiome in crops: diversity, distribution and potential role in crops improvements. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, USA, pp 305–332

    Chapter  Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019a) Recent advancement in white biotechnology through fungi: volume 1: diversity and enzymes perspectives. Springer International Publishing, Cham

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2016) Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150

    PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015b) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Sharma D, Gulati S, Singh S, Kaushik R, Dey R et al (2015c) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 5:12293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019b) Recent advancement in white biotechnology through fungi: volume 2: perspective for value-added products and environments. Springer International Publishing, Cham

    Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019c) Recent advancement in white biotechnology through fungi: volume 3: perspective for sustainable environments. Springer International Publishing, Cham

    Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N et al (2018b) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. https://doi.org/10.1016/b978-0-444-63501-3.00001-6

    Chapter  Google Scholar 

  • Yadav AN, Yadav N (2018) Stress-adaptive microbes for plant growth promotion and alleviation of drought stress in plants. Acta Sci Agric 2:85–88

    Google Scholar 

  • Yadav AN, Yadav N, Sachan SG, Saxena AK (2019b) Biodiversity of psychrotrophic microbes and their biotechnological applications. J Appl Biol Biotechnol 7:99–108

    Article  Google Scholar 

  • Yang H, Ye W, Ma J, Zeng D, Rong Z, Xu M et al (2018) Endophytic fungal communities associated with field-grown soybean roots and seeds in the Huang-Huai region of China. PeerJ 6:e4713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang W, Xu L, Yang L, Huang Y, Li S, Shen Y (2014) Phomopsidone A, a novel depsidone metabolite from the mangrove endophytic fungus Phomopsis sp. A123. Fitoterapia 96:146–151

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y-K, Qiao X-G, Miao C-P, Liu K, Chen Y-W, Xu L-H et al (2016) Diversity, distribution and biotechnological potential of endophytic fungi. Ann Microbiol 66:529–542

    Article  CAS  Google Scholar 

  • Zikmundova M, Drandarov K, Bigler L, Hesse M, Werner C (2002) Biotransformation of 2-benzoxazolinone and 2-hydroxy-1, 4-benzoxazin-3-one by endophytic fungi isolated from Aphelandra tetragona. Appl Environ Microbiol 68:4863–4870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasir Rehman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saleem, H., Mohsin, H., Tanvir, R., Rehman, Y. (2020). Culturable Endophytic Fungal Communities Associated with Cereal Crops and Their Role in Plant Growth Promotion. In: Yadav, A., Singh, J., Rastegari, A., Yadav, N. (eds) Plant Microbiomes for Sustainable Agriculture. Sustainable Development and Biodiversity, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-38453-1_2

Download citation

Publish with us

Policies and ethics