Skip to main content

Internet of Things in Sustainable Energy Systems

  • Chapter
  • First Online:
Internet of Things for Sustainable Community Development

Part of the book series: Internet of Things ((ITTCC))

Abstract

Our planet has abundant renewable and conventional energy resources but technological capability and capacity gaps coupled with water-energy needs limit the benefits of these resources to citizens. Through IoT technology solutions and state-of-the-art IoT sensing and communications approaches, the sustainable energy-related research and innovation can bring a revolution in this area. Moreover, by the leveraging current infrastructure, including renewable energy technologies, microgrids, and power-to-gas (P2G) hydrogen systems, the Internet of Things in sustainable energy systems can address challenges in energy security to the community, with a minimal trade-off to environment and culture. In this chapter, the IoT in sustainable energy systems approaches, methodologies, scenarios, and tools is presented with a detailed discussion of different sensing and communications techniques. This IoT approach in energy systems is envisioned to enhance the bidirectional interchange of network services in grid by using Internet of Things in grid that will result in enhanced system resilience, reliable data flow, and connectivity optimization. Moreover, the sustainable energy IoT research challenges and innovation opportunities are also discussed to address the complex energy needs of our community and promote a strong energy sector economy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Administration, U. E. I. (2012). Climate impacts and U.S. transportation. Technical input report for the national climate assessment.

    Google Scholar 

  2. Ajanovic, A., & Haas, R. (2019). On the long-term prospects of power-to-gas technologies. Wiley Interdisciplinary Reviews: Energy and Environment, 8(1), e318.

    Article  Google Scholar 

  3. Akagi, S., Yokelson, R. J., Wiedinmyer, C., Alvarado, M., Reid, J., Karl, T., et al. (2011). Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics, 11(9), 4039–4072.

    Article  Google Scholar 

  4. Alnaser, W., & Alnaser, N. (2020). The impact of the rise of using solar energy in GCC countries. In Renewable energy and sustainable buildings (pp. 167–183). Berlin: Springer.

    Chapter  Google Scholar 

  5. Aparna, J., Philip, S., & Topkar, A. (2019). Thermal energy harvester powered piezoresistive pressure sensor system with wireless operation for nuclear reactor application. Review of Scientific Instruments, 90(4), 044705.

    Article  Google Scholar 

  6. Arghira, N., Hossu, D., Fagarasan, I., Iliescu, S. S., & Costianu, D. R. (2011). Modern SCADA philosophy in power system operation-A survey. University” Politehnica” of Bucharest Scientific Bulletin, Series C: Electrical Engineering, 73(2), 153–166.

    Google Scholar 

  7. Ascione, F., Borrelli, M., De Masi, R. F., de Rossi, F., & Vanoli, G. P. (2019). A framework for nzeb design in Mediterranean climate: Design, building and set-up monitoring of a lab-small villa. Solar Energy, 184, 11–29.

    Article  Google Scholar 

  8. Averyt, K. (2011). Freshwater use by US power plants: Electricity’s thirst for a precious resource. Cambridge: Union of Concerned Scientists.

    Google Scholar 

  9. Balagopal, B., Kerrigan, S., Kim, H., Chow, M. Y., Bourham, M., & Jiang, X. (2019). A smart sensor prototype for vibration sensing in nuclear power plants. In 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE) (pp. 1127–1132). Piscataway, IEEE (2019)

    Google Scholar 

  10. Banta, R. M., Pichugina, Y. L., Brewer, W. A., James, E. P., Olson, J. B., Benjamin, S. G., et al. (2018). Evaluating and improving NWP forecast models for the future: How the needs of offshore wind energy can point the way. Bulletin of the American Meteorological Society, 99(6), 1155–1176.

    Article  Google Scholar 

  11. Battisti, L., & Ricci, M. (2018). Wind energy exploitation in urban environment: TUrbWind 2017 colloquium. Berlin: Springer.

    Book  Google Scholar 

  12. Bellocchi, S., De Falco, M., Gambini, M., Manno, M., Stilo, T., & Vellini, M. (2019). Opportunities for power-to-gas and power-to-liquid in CO2-reduced energy scenarios: The Italian case. Energy, 175, 847–861.

    Article  Google Scholar 

  13. Ben-Daya, M., Hassini, E., & Bahroun, Z. (2019). Internet of things and supply chain management: A literature review. International Journal of Production Research, 57(15–16), 4719–4742.

    Article  Google Scholar 

  14. Bengelsdorf, F. R., Beck, M. H., Erz, C., Hoffmeister, S., Karl, M. M., Riegler, P., et al. (2018). Bacterial anaerobic synthesis gas (syngas) and CO2 + H2 fermentation. In Advances in applied microbiology (Vol. 103, pp. 143–221). Amsterdam: Elsevier.

    Google Scholar 

  15. Bianco, L., Friedrich, K., Wilczak, J. M., Hazen, D., Wolfe, D., Delgado, R., et al. (2017). Assessing the accuracy of microwave radiometers and radio acoustic sounding systems for wind energy applications. Atmospheric Measurement Techniques, 10(5), 1707 (2017)

    Google Scholar 

  16. Blondeau, J., Rijmenans, L., Annendijck, J., Heyer, A., Martensen, E., Popin, I., et al. (2018). Burner air-fuel ratio monitoring in large pulverised-fuel boilers using advanced sensors: Case study of a 660 MWe coal-fired power plant. Thermal Science and Engineering Progress, 5, 471–481.

    Article  Google Scholar 

  17. Bouzarovski, S., & Petrova, S. (2015). A global perspective on domestic energy deprivation: Overcoming the energy poverty–fuel poverty binary. Energy Research & Social Science, 10, 31–40.

    Article  Google Scholar 

  18. Bramley, P. (2018). A temperature measuring apparatus and a method of measuring temperature. US Patent Application No. 15/767,091.

    Google Scholar 

  19. Brew-Hammond, A. (2010). Energy access in Africa: Challenges ahead. Energy Policy, 38(5), 2291–2301.

    Article  Google Scholar 

  20. Buckeridge, M. S., Grandis, A., & Tavares, E. Q. (2019). Disassembling the glycomic code of sugarcane cell walls to improve second-generation bioethanol production. In Bioethanol production from food crops (pp. 31–43). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  21. Cai, C., Carter, B., Srivastava, M., Tsung, J., Vahedi-Faridi, J., & Wiley, C. (2016). Designing a radiation sensing UAV system. In 2016 IEEE Systems and Information Engineering Design Symposium (SIEDS) (pp. 165–169). Piscataway: IEEE.

    Google Scholar 

  22. Chang, H., Duan, C., Xu, X., Pei, H., Shu, S., & Tu, Z. (2019). Technical performance analysis of a micro-combined cooling, heating and power system based on solar energy and high temperature PEMFC. International Journal of Hydrogen Energy, 44(38), 21080–21089.

    Article  Google Scholar 

  23. Cohen, M. J., Tirado, C., Aberman, N. L., Thompson, B., et al. (2008). Impact of climate change and bioenergy on nutrition. Rome: Food and Agricultural Organisations of the United Nations (FAO) and International Food Policy Research Institute (IFPRI).

    Google Scholar 

  24. Corradini, M. L., Anderson, M., Imel, G., Blue, T., Roberts, J., & Davis, K. (2018). Advanced instrumentation for transient reactor testing. Technical Report. Madison: University of Wisconsin.

    Google Scholar 

  25. Council, N. R., et al. (2012). Renewable fuel standard: Potential economic and environmental effects of US biofuel policy. Washington: National Academies Press.

    Google Scholar 

  26. Cutter, S. L., Solecki, W., Bragado, N., Carmin, J., Fragkias, M., Ruth, M., et al. (2013). Chapter 11–Urban systems, infrastructure, and vulnerability. In Federal advisory committee draft climate assessment. Washington: National Climate Assessment.

    Google Scholar 

  27. Daigneault, A., Sohngen, B., & Sedjo, R. (2012). Economic approach to assess the forest carbon implications of biomass energy. Environmental Science & Technology, 46(11), 5664–5671.

    Article  Google Scholar 

  28. Dale, V., Lowrance, R., Mulholland, P., & Robertson, G. (2010). Bioenergy sustainability at the regional scale. Ecology and Society, 15(4), 23.

    Article  Google Scholar 

  29. Daw, J., & Unruh, T. C. (2019). Sensors for measuring thermal conductivity and related methods. US Patent Application No. 15/827,891.

    Google Scholar 

  30. Deb, S., Das, S., Pradhan, A. K., Banik, A., Chatterjee, B., & Dalai, S. (2019). Estimation of contamination level of overhead insulators based on surface leakage current employing detrended fluctuation analysis. IEEE Transactions on Industrial Electronics. https://doi.org/10.1109/TIE.2019.2934008.

  31. Dong, K., Sun, R., Jiang, H., & Zeng, X. (2018). CO2 emissions, economic growth, and the environmental Kuznets curve in China: What roles can nuclear energy and renewable energy play? Journal of Cleaner Production, 196, 51–63.

    Article  Google Scholar 

  32. Dong, L., Zhang, D., Wang, T., Wang, Q., & Han, R. (2018). On line monitoring of substation equipment temperature based on fiber Bragg grating. In 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC) (pp. 1500–1503). Piscataway, IEEE.

    Book  Google Scholar 

  33. Dong, M., Zhong, G. Q., Miao, S. Z., Zheng, C. T., & Wang, Y. D. (2018). CO and CO2 dual-gas detection based on mid-infrared wideband absorption spectroscopy. Optoelectronics Letters, 14(2), 119–123.

    Article  Google Scholar 

  34. Dong, Z., Wang, R., Fan, M., Fu, X., & Geng, S. (2019). Integrated estimation model of clean coal ash content for froth flotation based on model updating and multiple LS-SVMS. Physicochemical Problems of Mineral Processing, 55, 21–37.

    Google Scholar 

  35. Ejaz, W., & Anpalagan, A. (2019). Internet of things enabled electric vehicles in smart cities. In Internet of things for smart cities (pp. 39–46). Berlin: Springer.

    Chapter  Google Scholar 

  36. EPA, U. (2013). Inventory of us greenhouse gas emissions and sinks: 1990–2011 (Vol. 505). Washington: United States Environmental Protection Agency.

    Google Scholar 

  37. Escudero-Oñate, C., & Ferrando-Climent, L. (2019). Microalgae for biodiesel production and pharmaceutical removal from water. In Nanoscience and biotechnology for environmental applications (pp. 1–28). Berlin: Springer.

    Google Scholar 

  38. Fadel, E., Gungor, V. C., Nassef, L., Akkari, N., Malik, M. A., Almasri, S., et al. (2015). A survey on wireless sensor networks for smart grid. Computer Communications, 71, 22–33.

    Article  Google Scholar 

  39. Feng, W., Zhang, Q., Ji, H., Wang, R., Zhou, N., Ye, Q., et al. (2019). A review of net zero energy buildings in hot and humid climates: Experience learned from 34 case study buildings. Renewable and Sustainable Energy Reviews, 114, 109303.

    Article  Google Scholar 

  40. Firouzjah, K. G. (2018). Distribution network expansion based on the optimized protective distance of surge arresters. IEEE Transactions on Power Delivery, 33(4), 1735–1743.

    Article  Google Scholar 

  41. Galik, C. S., Abt, R., & Wu, Y. (2009). Forest biomass supply in the southeastern United States—Implications for industrial roundwood and bioenergy production. Journal of Forestry, 107(2), 69–77.

    Google Scholar 

  42. Ghosal, A., & Conti, M. (2019). Key management systems for smart grid advanced metering infrastructure: A survey. IEEE Communications Surveys & Tutorials, 21, 2831–2848.

    Article  Google Scholar 

  43. Giddey, S., Badwal, S. P., & Ju, H. (2019). Polymer electrolyte membrane technologies integrated with renewable energy for hydrogen production. In Current trends and future developments on (Bio-) membranes (pp. 235–259). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  44. Giot, M., Vermeeren, L., Lyoussi, A., Reynard-Carette, C., Lhuillier, C., Mégret, P., et al. (2017). Nuclear instrumentation and measurement: a review based on the ANIMMA conferences. EPJ N-Nuclear Sciences & Technologies, 3, 33.

    Article  Google Scholar 

  45. Glassley, W. E. (2018). Geology and hydrology of geothermal energy. In Power stations using locally available energy sources. A Volume in the Encyclopedia of Sustainability Science and Technology Series (2nd Ed., pp. 23–34). Berlin: Springer.

    Google Scholar 

  46. Głowacki, S., Tulej, W., Sojak, M., Bryś, A., Golisz, E., & Kaczmarczyk, J. (2020). Analysis of physical properties of pellet produced from different types of dendromass. In Renewable energy sources: Engineering, technology, innovation (pp. 79–88). Berlin: Springer.

    Chapter  Google Scholar 

  47. Gold, R., Furrey, L., Nadel, S., Laitner, J. S., & Elliott, R. N. (2009). Energy efficiency in the American clean energy and security act of 2009:Impacts of current provisions and opportunities to enhance the legislation. ACEEE Report E096.

    Google Scholar 

  48. Götz, M., Lefebvre, J., Mörs, F., Koch, A. M., Graf, F., Bajohr, S., et al. (2016). Renewable power-to-gas: A technological and economic review. Renewable Energy, 85, 1371–1390.

    Article  Google Scholar 

  49. Guerrieri, A., Serra, J., Pubill, D., Verikoukis, C., & Fortino, G. (2015). Intra smart grid management frameworks for control and energy saving in buildings. In International Conference on Internet and Distributed Computing Systems (pp. 131–142). Berlin: Springer.

    Chapter  Google Scholar 

  50. Gui, E. M., & MacGill, I.: Typology of future clean energy communities: An exploratory structure, opportunities, and challenges. Energy Research & Social Science, 35, 94–107.

    Google Scholar 

  51. Gupta, R., Yadav, G., Kumar, G., Yadav, A., Saini, J. K., Kuhad, R. C., et al. (2019). Second generation bioethanol production: The state of art. In Sustainable approaches for biofuels production technologies (pp. 121–146). Berlin: Springer.

    Google Scholar 

  52. Guth, U., & Wiemhöfer, H. D. (2019). Gas sensors based on oxygen ion conducting metal oxides. In Gas sensors based on conducting metal oxides (pp. 13–60). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  53. Haberl, H., Erb, K. H., Krausmann, F., Running, S., Searchinger, T. D., & Smith, W. K. (2013). Bioenergy: How much can we expect for 2050? Environmental Research Letters, 8(3), 031004.

    Article  Google Scholar 

  54. Haines, A., Smith, K. R., Anderson, D., Epstein, P. R., McMichael, A. J., Roberts, I., et al. (2007). Policies for accelerating access to clean energy, improving health, advancing development, and mitigating climate change. The Lancet, 370(9594), 1264–1281.

    Article  Google Scholar 

  55. Hand, M., Baldwin, S., DeMeo, E., Reilly, J., Mai, T., & Arent, D. (2012). Renewable electricity futures study (entire report). Washington: National Renewable Energy Laboratory.

    Google Scholar 

  56. Harada, H., Mizutani, K., Fujiwara, J., Mochizuki, K., Obata, K., & Okumura, R. (2017). IEEE 802.15. 4g based Wi-SUN communication systems. IEICE Transactions on Communications, 100(7), 1032–1043.

    Article  Google Scholar 

  57. Hoffman, G. R. (2008). Sensing load tap changer (LTC) conditions. US Patent Application No. 7,323,852.

    Google Scholar 

  58. Hong, S., Hong, Y., Jeong, Y., Jung, G., Shin, W., Park, J., et al. (2019). Improved CO gas detection of Si MOSFET gas sensor with catalytic Pt decoration and pre-bias effect. Sensors and Actuators B: Chemical, 300, 127040.

    Article  Google Scholar 

  59. Ito, M., Hori, T., Teranishi, S., Nagao, M., & Hibino, T. (2018). Intermediate-temperature electrolysis of energy grass Miscanthus sinensis for sustainable hydrogen production. Scientific Reports, 8(1), 16186.

    Article  Google Scholar 

  60. Jordan, B. F., Baudelet, C., & Gallez, B. (1998). Carbon-centered radicals as oxygen sensors for in vivo electron paramagnetic resonance: screening for an optimal probe among commercially available charcoals. Magnetic Resonance Materials in Physics, Biology and Medicine, 7(2), 121–129.

    Article  Google Scholar 

  61. Kao, K. (2004). Ferroelectrics, piezoelectrics and pyroelectrics. In Dielectric phenomena in solids (pp. 213–282). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  62. Kessler, R. (2011). Stormwater strategies: Cities prepare aging infrastructure for climate change. Environmental Health Perspectives, 119, A514.

    Article  Google Scholar 

  63. King, M. S., & Houts, M. (2018). Sensor needs for nuclear thermal propulsion. In Proceedings wireless for space and extreme environments, December 11, 2018–December 13, 2018, Huntsville, AL; United States.

    Google Scholar 

  64. Kovač, A., Marciuš, D., & Budin, L. (2019). Solar hydrogen production via alkaline water electrolysis. International Journal of Hydrogen Energy, 44(20), 9841–9848.

    Article  Google Scholar 

  65. Kuang, Y., Li, Y., Deng, Y., Huang, D., & Qiu, Z. (2019). Electric field analysis and structure design of the box of bird guard used in 220 kV transmission line. The Journal of Engineering, 2019(16), 2860–2863.

    Article  Google Scholar 

  66. Kurrer, R., & Feser, K. (1998). The application of ultra-high-frequency partial discharge measurements to gas-insulated substations. IEEE Transactions on Power Delivery, 13(3), 777–782.

    Article  Google Scholar 

  67. Kushwaha, D., Upadhyay, S., & Mishra, P. (2018). Nanotechnology in bioethanol/biobutanol production. In Green nanotechnology for biofuel production (pp. 115–127). Berlin: Springer.

    Chapter  Google Scholar 

  68. Kutscher, C. (2009). Concentrating solar power commercial application study: Reducing water consumption of concentrating solar power electricity generation. In Report to Congress. Washington: US Department of Energy.

    Google Scholar 

  69. Laboratory, N. E. T. (2013). Gasifipedia: Advantages of gasification – high efficiency. Technical Report.

    Google Scholar 

  70. Laffont, G., Cotillard, R., Roussel, N., Desmarchelier, R., & Rougeault, S. (2018). Temperature resistant fiber Bragg gratings for on-line and structural health monitoring of the next-generation of nuclear reactors. Sensors, 18(6), 1791.

    Article  Google Scholar 

  71. Lancaster, M. (2019). Power line maintenance monitoring. US Patent Application No. 10/205,307.

    Google Scholar 

  72. Lannes, D. P., Gama, A. L., & Bento, T. F. B. (2018). Measurement of flow rate using straight pipes and pipe bends with integrated piezoelectric sensors. Flow Measurement and Instrumentation, 60, 208–216.

    Article  Google Scholar 

  73. Lapo, K. E., Hinkelman, L. M., Sumargo, E., Hughes, M., & Lundquist, J. D. (2017). A critical evaluation of modeled solar irradiance over California for hydrologic and land surface modeling. Journal of Geophysical Research: Atmospheres, 122(1), 299–317.

    Google Scholar 

  74. Loughry, M. (2010). Climate change, human movement and the promotion of mental health: what have we learnt from earlier global stressors. In Climate change and displacement: Multidisciplinary perspectives. Portland: Hart Publishing (2010)

    Google Scholar 

  75. Lu, Y., Zhang, X. P., Huang, Z., Lu, J., & Wang, C. (2019). Definition and design of zero energy buildings. In Green energy advances. London: IntechOpen.

    Google Scholar 

  76. Luin, B., Petelin, S., & Al-Mansour, F. (2019). Microsimulation of electric vehicle energy consumption. Energy, 174, 24–32.

    Article  Google Scholar 

  77. Madadi, R., Tabatabaei, M., Aghbashlo, M., Zahed, M. A., & Pourbabaee, A. A. (2018). Biodiesel from microalgae. In Waste to wealthpp. 277–318. Berlin: Springer.

    Google Scholar 

  78. Mai, T., Wiser, R., Sandor, D., Brinkman, G., Heath, G., Denholm, P., et al. (2012). Renewable electricity futures study. Volume 1: Exploration of high-penetration renewable electricity futures. Technical Report. Golden: National Renewable Energy Laboratory (NREL).

    Google Scholar 

  79. Mandotra, S. K., Kumar, R., Upadhyay, S. K., & Ramteke, P. W. (2018). Nanotechnology: A new tool for biofuel production. In Green nanotechnology for biofuel production (pp. 17–28). Berlin: Springer.

    Chapter  Google Scholar 

  80. McMichael, A. J., Powles, J. W., Butler, C. D., & Uauy, R. (2007). Food, livestock production, energy, climate change, and health. The Lancet, 370(9594), 1253–1263.

    Article  Google Scholar 

  81. Means III, E. G., Laugier, M. C., Daw, J. A., & Owen, D. M. (2010). Impacts of climate change on infrastructure planning and design: Past practices and future needs. Journal-American Water Works Association, 102(6), 56–65.

    Article  Google Scholar 

  82. Meng, W., Ma, R., & Chen, H. H.: Smart grid neighborhood area networks: A survey. IEEE Network, 28(1), 24–32.

    Google Scholar 

  83. Miao, B., & Chan, S. H. (2019). The economic feasibility study of a 100-MW Power-to-Gas plant. International Journal of Hydrogen Energy, 44, 20978–20986.

    Article  Google Scholar 

  84. Michael, P. A., Czubala, M., Palmer, M., & Kumar, A. (2018). Power extraction from small hydropower plant. In International Conference on Intelligent Computing and Applications (pp. 273–285). Berlin: Springer.

    Chapter  Google Scholar 

  85. Mocanu, D. C., Mocanu, E., Nguyen, P. H., Gibescu, M., & Liotta, A. (2016). Big IoT data mining for real-time energy disaggregation in buildings. In 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 003765–003769). Piscataway: IEEE.

    Chapter  Google Scholar 

  86. Mocanu, E., Mocanu, D. C., Nguyen, P. H., Liotta, A., Webber, M. E., Gibescu, M., et al. (2018). On-line building energy optimization using deep reinforcement learning. IEEE Transactions on Smart Grid, 10, 3698–3708.

    Article  Google Scholar 

  87. Muhanji, S. O., Flint, A. E., & Farid, A. M. (2019). The development of IoT within energy infrastructure. In eIoT (pp. 27–90). Berlin: Springer.

    Chapter  Google Scholar 

  88. Muhanji, S. O., Flint, A. E., & Farid, A. M. (2019). eIoT as a solution to energy-management change drivers. In eIoT (pp. 1–15). Berlin: Springer.

    Chapter  Google Scholar 

  89. Nag, R., Auer, A., Markey, B. K., Whyte, P., Nolan, S., O’Flaherty, V., et al. (2019). Anaerobic digestion of agricultural manure and biomass–critical indicators of risk and knowledge gaps. Science of the Total Environment, 690, 460–479.

    Article  Google Scholar 

  90. Nguyen, T. T., Murakawa, H., Tsuzuki, N., Duong, H., & Kikura, H. (2016). Ultrasonic Doppler velocity profile measurement of single-and two-phase flows using spike excitation. Experimental Techniques, 40(4), 1235–1248.

    Article  Google Scholar 

  91. Ong, S. A., & Yamagiwa, K. (2018). Evaluation on the electricity generation using membrane-less fixed-bed upflow microbial fuel cell. Rendiconti Lincei. Scienze Fisiche e Naturali, 29(1), 103–107.

    Article  Google Scholar 

  92. Pachauri, S. (2011). Reaching an international consensus on defining modern energy access. Current Opinion in Environmental Sustainability, 3(4), 235–240.

    Article  Google Scholar 

  93. Pan, Z., Segal, M., Arritt, R. W., & Takle, E. S. (2004). On the potential change in solar radiation over the US due to increases of atmospheric greenhouse gases. Renewable Energy, 29(11), 1923–1928.

    Article  Google Scholar 

  94. Pastina, B., Isabey, J., & Hickel, B. (1999). The influence of water chemistry on the radiolysis of the primary coolant water in pressurized water reactors. Journal of Nuclear Materials, 264(3), 309–318.

    Article  Google Scholar 

  95. Perlack, R. D. (2005). Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply. Oak Ridge: Oak Ridge National Laboratory.

    Book  Google Scholar 

  96. U.S. Department of Energy. (2011). U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry. Perlack, R. D. & Stokes, B. J. (Leads), ORNL/TM-2011/224 (p. 227). Oak Ridge: Oak Ridge National Laboratory.

    Google Scholar 

  97. Qiu, X., Li, J., Wei, Y., Zhang, E., Li, N., Li, C., et al. (2019). Study on the oxidation and release of gases in spontaneous coal combustion using a dual-species sensor employing laser absorption spectroscopy. Infrared Physics & Technology, 102, 103042.

    Article  Google Scholar 

  98. Raja, N., Balasubramaniam, K., & Periyannan, S. (2018). Ultrasonic waveguide-based multi-level temperature sensor for confined space measurements. IEEE Sensors Journal, 18(14), 5699–5706.

    Article  Google Scholar 

  99. Raza, N., Akbar, M. Q., Soofi, A. A., & Akbar, S. (2019). Study of smart grid communication network architectures and technologies. Journal of Computer and Communications, 7(3), 19–29.

    Article  Google Scholar 

  100. Reynard-Carette, C., Kohse, G., Brun, J., Carette, M., Volte, A., & Lyoussi, A. (2018). Review of nuclear heating measurement by calorimetry in France and USA. In EPJ Web of Conferences (Vol. 170, p. 04019). Les Ulis: EDP Sciences.

    Google Scholar 

  101. Robertson, G. P., Dale, V. H., Doering, O. C., Hamburg, S. P., Melillo, J. M., Wander, M. M., et al. (2008). Sustainable biofuels redux. Science, 322(5898), 49–50.

    Article  Google Scholar 

  102. Rocazella, M.: The use and limitations of stabilized zirconia oxygen sensors in fluidized—bed coal combustors. In Proceedings – The Electrochemical Society (Vol. 83, pp. 85–100).

    Google Scholar 

  103. Rogelj, J., McCollum, D. L., & Riahi, K. (2013). The UN’s ’sustainable energy for all’ initiative is compatible with a warming limit of 2 C. Nature Climate Change, 3(6), 545.

    Article  Google Scholar 

  104. Roy, S., & Chen, L. (2011). Water use for electricity generation and other sectors: recent changes (1985–2005) and future projections (2005–2030). Technical Report, Electric Power Research Institute. http://my.epri.com/portal/server.pt?Abstractid=000000000001023676.

    Google Scholar 

  105. Santika, W. G., Anisuzzaman, M., Bahri, P. A., Shafiullah, G., Rupf, G. V., & Urmee, T. (2019). From goals to joules: A quantitative approach of interlinkages between energy and the sustainable development goals. Energy Research & Social Science, 50, 201–214.

    Article  Google Scholar 

  106. Sathaye, J. (2011). Estimating risk to California energy infrastructure from projected climate change. Berkeley: International Energy Studies Group.

    Book  Google Scholar 

  107. Satyanarayanan, M., Gao, W., & Lucia, B. (2019). The computing landscape of the 21st century. In Proceedings of the 20th International Workshop on Mobile Computing Systems and Applications (pp. 45–50). New York: ACM.

    Google Scholar 

  108. Schulze, E. D., Körner, C., Law, B. E., Haberl, H., & Luyssaert, S. (2012). Large-scale bioenergy from additional harvest of forest biomass is neither sustainable nor greenhouse gas neutral. GCB Bioenergy, 4(6), 611–616.

    Article  Google Scholar 

  109. Scott, S. A., Davey, M. P., Dennis, J. S., Horst, I., Howe, C. J., Lea-Smith, D. J., et al. (2010). Biodiesel from algae: Challenges and prospects. Current Opinion in Biotechnology, 21(3), 277–286.

    Article  Google Scholar 

  110. Severnyák, K. (2019). Contradictions of low-emission nZEB buildings. In IOP Conference Series: Earth and Environmental Science (Vol. 323, p. 012006). Bristol : IOP Publishing.

    Google Scholar 

  111. Shaltaeva, Y. R., Podlepetsky, B. I., & Pershenkov, V. S. (2017). Detection of gas traces using semiconductor sensors, ion mobility spectrometry, and mass spectrometry. European Journal of Mass Spectrometry, 23(4), 217–224.

    Article  Google Scholar 

  112. Sharma, K., & Saini, L. M. (2017). Power-line communications for smart grid: Progress, challenges, opportunities and status. Renewable and Sustainable Energy Reviews, 67, 704–751.

    Article  Google Scholar 

  113. Shayan, E., Zare, V., & Mirzaee, I. (2018). Hydrogen production from biomass gasification; A theoretical comparison of using different gasification agents. Energy Conversion and Management, 159, 30–41.

    Article  Google Scholar 

  114. Shekari, T., Bayens, C., Cohen, M., Graber, L., & Beyah, R. (2019). RFDIDS: Radio frequency-based distributed intrusion detection system for the power grid. New York: NDSS.

    Google Scholar 

  115. Shuk, P., Mcguire, C., & Brosha, E. (2019). Methane gas sensing technologies in combustion: Comprehensive review. Sensors & Transducers, 229(1), 1–10.

    Google Scholar 

  116. Silva-Leon, J., Cioncolini, A., Nabawy, M. R., Revell, A., & Kennaugh, A. (2019). Simultaneous wind and solar energy harvesting with inverted flags. Applied Energy, 239, 846–858.

    Article  Google Scholar 

  117. Sivasankar, V., Mylsamy, P., & Omine, K. (2018). Microbial fuel cell technology for bioelectricity. Berlin: Springer.

    Book  Google Scholar 

  118. Skaggs, R., Hibbard, K. A., Frumhoff, P., Lowry, T., Middleton, R., Pate, R., et al. (2012). Climate and energy-water-land system interactions technical report to the US Department of Energy in support of the national climate assessment. Technical Report. Richland: Pacific Northwest National Laboratory (PNNL).

    Book  Google Scholar 

  119. Smith, K. R., & Haigler, E. (2008). Co-benefits of climate mitigation and health protection in energy systems: scoping methods. Annual Review of Public Health, 29, 11–25.

    Article  Google Scholar 

  120. Smith, W. K., Cleveland, C. C., Reed, S. C., Miller, N. L., & Running, S. W. (2012). Bioenergy potential of the United States constrained by satellite observations of existing productivity. Environmental Science & Technology, 46(6), 3536–3544.

    Article  Google Scholar 

  121. Statistics, A. (2012). USDA agricultural projections to 2021. In Long-term Projections Report OCE-2012-1. Washington: USDA.

    Google Scholar 

  122. Statistics, E. (2011). Analysis. US Department of Energy, US Energy Information Administration. Natural gas weekly update. Webpage available as early as Dec, 4.

    Google Scholar 

  123. Tan, J., Duan, J., Zhao, Y., He, B., & Tang, Q. (2018). Generators to harvest ocean wave energy through electrokinetic principle. Nano Energy, 48, 128–133.

    Article  Google Scholar 

  124. Tan, Y., Croiset, E., Douglas, M. A., & Thambimuthu, K. V. (2006). Combustion characteristics of coal in a mixture of oxygen and recycled flue gas. Fuel, 85(4), 507–512.

    Article  Google Scholar 

  125. Tao, R., Xiao, R., & Liu, W. (2018). Investigation of the flow characteristics in a main nuclear power plant pump with eccentric impeller. Nuclear Engineering and Design, 327, 70–81.

    Article  Google Scholar 

  126. Teichert, H., Fernholz, T., & Ebert, V. (2003). Simultaneous in situ measurement of CO, H 2 O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers. Applied optics, 42(12), 2043–2051.

    Article  Google Scholar 

  127. Thema, M., Bauer, F., & Sterner, M. (2019). Power-to-gas: Electrolysis and methanation status review. Renewable and Sustainable Energy Reviews, 112, 775–787.

    Article  Google Scholar 

  128. Tirado, M., Cohen, M., Aberman, N., Meerman, J., & Thompson, B. (2010). Addressing the challenges of climate change and biofuel production for food and nutrition security. Food Research International, 43(7), 1729–1744.

    Article  Google Scholar 

  129. Van de Kaa, G., Fens, T., Rezaei, J., Kaynak, D., Hatun, Z., & Tsilimeni-Archangelidi, A. (2019). Realizing smart meter connectivity: Analyzing the competing technologies power line communication, mobile telephony, and radio frequency using the best worst method. Renewable and Sustainable Energy Reviews, 103, 320–327.

    Article  Google Scholar 

  130. Wang, J., Chen, J., Xiong, X., Lu, X., Liao, Z., & Chen, X. (2019). Temperature safety analysis and backup protection scheme improvement for overhead transmission line in power oscillation condition. Electric Power Systems Research, 166, 88–98.

    Article  Google Scholar 

  131. Wang, L., Zhang, Y., Zhou, X., & Zhang, Z. (2019). Sensitive dual sensing system for oxygen and pressure based on deep ultraviolet absorption spectroscopy. Sensors and Actuators B: Chemical, 281, 514–519.

    Article  Google Scholar 

  132. Wilbanks, T., Bhatt, V., Bilello, D., Bull, S., Ekmann, J., Horak, W., et al. (2008). Effects of climate change on energy production and use in the United States (p. 12). Washington: US Department of Energy Publications.

    Google Scholar 

  133. Wilbanks, T., Bilello, D., Schmalzer, D., Scott, M., et al. (2013). Climate change and energy supply and use: Technical report for the US Department of Energy in support of the national climate assessment. Washington: Island Press.

    Google Scholar 

  134. Wilbanks, T. J., & Fernandez, S. (2014). Climate change and infrastructure, urban systems, and vulnerabilities: Technical report for the US Department of Energy in support of the national climate assessment. Washington: Island Press.

    Book  Google Scholar 

  135. Wilhelmi, O. V., & Hayden, M. H. (2010). Connecting people and place: A new framework for reducing urban vulnerability to extreme heat. Environmental Research Letters, 5(1), 014021.

    Article  Google Scholar 

  136. Wilkinson, P., Smith, K. R., Beevers, S., Tonne, C., & Oreszczyn, T. (2007). Energy, energy efficiency, and the built environment. The Lancet, 370(9593), 1175–1187.

    Article  Google Scholar 

  137. Wilkinson, P., Smith, K. R., Davies, M., Adair, H., Armstrong, B. G., Barrett, M., et al. (2009). Public health benefits of strategies to reduce greenhouse-gas emissions: Household energy. The Lancet, 374(9705), 1917–1929.

    Article  Google Scholar 

  138. Williams, J. H., DeBenedictis, A., Ghanadan, R., Mahone, A., Moore, J., Morrow, W.R., et al. (2012). The technology path to deep greenhouse gas emissions cuts by 2050: The pivotal role of electricity. Science, 335(6064), 53–59.

    Article  Google Scholar 

  139. Wu, M., & Xu, H. (2018). Consumptive water use in the production of ethanol and petroleum gasoline—2018 update. Technical Report. Argonne: Argonne National Laboratory (ANL).

    Book  Google Scholar 

  140. Yardibi, T., Ganesh, M., & Johnson, T. L. (2018). Electrical substation fault monitoring and diagnostics. US Patent Application No. 9,964,625.

    Google Scholar 

  141. Ye, F., Qian, Y., & Hu, R. Q. (2014). Energy efficient self-sustaining wireless neighborhood area network design for smart grid. IEEE Transactions on Smart Grid, 6(1), 220–229.

    Article  Google Scholar 

  142. Yi, P., Zhu, T., Jiang, B., Jin, R., & Wang, B. (2016). Deploying energy routers in an energy internet based on electric vehicles. IEEE Transactions on Vehicular Technology, 65(6), 4714–4725.

    Article  Google Scholar 

  143. Zanchi, G., Pena, N., & Bird, N. (2012). Is woody bioenergy carbon neutral? A comparative assessment of emissions from consumption of woody bioenergy and fossil fuel. GCB Bioenergy, 4(6), 761–772.

    Article  Google Scholar 

  144. Zhang, C., Chen, X., Li, Y., Ding, W., & Fu, G. (2018). Water-energy-food nexus: Concepts, questions and methodologies. Journal of Cleaner Production, 195, 625–639.

    Article  Google Scholar 

  145. Zhang, R., Cheng, Y., Li, Y., Zhou, D., & Cheng, S. (2019). Image-based flame detection and combustion analysis for blast furnace raceway. IEEE Transactions on Instrumentation and Measurement, 68(4), 1120–1131.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salam, A. (2020). Internet of Things in Sustainable Energy Systems. In: Internet of Things for Sustainable Community Development. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-35291-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35291-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35290-5

  • Online ISBN: 978-3-030-35291-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics