Skip to main content
Log in

CO and CO2 dual-gas detection based on mid-infrared wideband absorption spectroscopy

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

A dual-gas sensor system is developed for CO and CO2 detection using a single broadband light source, pyroelectric detectors and time-division multiplexing (TDM) technique. A stepper motor based rotating system and a single-reflection spherical optical mirror are designed and adopted for realizing and enhancing dual-gas detection. Detailed measurements under static detection mode (without rotation) and dynamic mode (with rotation) are performed to study the performance of the sensor system for the two gas samples. The detection period is 7.9 s in one round of detection by scanning the two detectors. Based on an Allan deviation analysis, the 1σ detection limits under static operation are 3.0 parts per million (ppm) in volume and 2.6 ppm for CO and CO2, respectively, and those under dynamic operation are 9.4 ppm and 10.8 ppm for CO and CO2, respectively. The reported sensor has potential applications in various fields requiring CO and CO2 detection such as in the coal mine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Escobedo, M. M. Erenas, N. Lopez-Ruiz, M. A. Carvajal, S. Gonzalez-Chocano, I. de Orbe-Paya, L. F. Capitan-Valley, A. J. Palma and A. Martinez-Olmos, Analytical Chemistry 89, 1697 (2017).

    Article  Google Scholar 

  2. Yu Lin, Liu Tie-gen, Liu Kun, Jiang Jun-feng and Wang Tao, Sensors & Actuators B Chemical 226, 170 (2016).

    Article  Google Scholar 

  3. F. Muller, A. Popp, S. Schiller and F. Kuhnemann, SPIE 5, 138 (2004).

    Google Scholar 

  4. H. Woehlck, M. B. Dunning and K. Nithipatikom, Journal of Clinical Monitoring & Computing 16, 535 (2000).

    Article  Google Scholar 

  5. U. Banach, C. Tiebe and T. Huebert, Food Control 26, 23 (2012).

    Article  Google Scholar 

  6. A. Y. Jones and P. K. Lam, Science of the Total Environment 354, 150 (2006).

    Article  ADS  Google Scholar 

  7. D. C. Panigrahi and R. M. Bhattacharjee, Journal-South African Institute of Mining and Metallurgy 104, 367 (2004).

    Google Scholar 

  8. Jiang Ya-long, Li Gai and Wang Jin-jun, Fire Technology 52, 1255 (2016).

    Article  Google Scholar 

  9. Xie Zhi-jian and Tan Qiu-lin, International Journal of Infrared & Millimeter Waves 27, 1639 (2006).

    Google Scholar 

  10. M. C. P. Moura, D. A. C. Branco, G. P. Peters, A. S. Szklo and R. Schaeffer, Energy Policy 61, 1357 (2013).

    Article  Google Scholar 

  11. H. P. Wu, X. K. Yin, L. Dong, K. L. Pei, A. Sampaolo, P. Patimisco, H. D. Zheng, W. G. Ma, L. Zhang and W. B. Yin, Applied Physics Letters 110, 121104 (2017).

    Article  ADS  Google Scholar 

  12. A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel and V. Spagnolo, Applied Physics Letters 107, 6165 (2015).

    Article  Google Scholar 

  13. F. K. Tittel, A. Sampaolo, P. Patimisco, L. Dong, A. Geras, T. Starecki and V. Spagnolo, Optics Express 24, A682 (2016).

    Article  ADS  Google Scholar 

  14. C. H. Han, D. W. Hong, S. D. Han, J. Gwak and K. C. Singh, Sensors & Actuators B Chemical 125, 224 (2007).

    Article  Google Scholar 

  15. H. Schwarz, Y. Dong and R. Horn, Chemical Engineering & Technology 39, 2011 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-tao Zheng  (郑传涛).

Additional information

This work has been supported by the National Key R&D Program of China (Nos.2016YFD0700101 and 2016YFC0303902), the National Natural Science Foundation of China (Nos.61775079, 61627823 and 61307124), the Science and Technology Planning Project of Guangdong Province, China (No.2017A020216011), the Science and Technology Development Program of Jilin Province, China (No.20140307014SF), the Industrial Innovation Program of Jilin Province, China (No.2017C027), and Changchun Municipal Science and Technology Bureau, China (No.14KG022).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, M., Zhong, Gq., Miao, Sz. et al. CO and CO2 dual-gas detection based on mid-infrared wideband absorption spectroscopy. Optoelectron. Lett. 14, 119–123 (2018). https://doi.org/10.1007/s11801-018-7248-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-018-7248-1

Navigation