Skip to main content

Roadmap of Nanomaterials in Renewable Energy

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications
  • 39 Accesses

Abstract

The properties of nanostructured materials are used in various applications for the use of renewable energies. This chapter briefly describes the operation of some devices, their main problems, and some examples of how these problems are overcome by using the properties of nanomaterials. Some of the devices described in this chapter include artificial photosynthesis, batteries, biofuels, carbon capture dioxide, energy storage, fuel cells, hydrogen energy, phase change materials, solar cells, and thermoelectric generator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Sudha PN et al (2018) Chapter 12 – Nanomaterials history, classification, unique properties, production and market. In: Barhoum A, Makhlouf ASH (eds) Emerging applications of nanoparticles and architecture nanostructures. Elsevier, Amsterdam, pp 341–384

    Chapter  Google Scholar 

  2. Llansola-Portoles MJ et al (2015) Artificial photosynthesis: from molecular to hybrid nanoconstructs. In: Rozhkova EA, Ariga K (eds) From molecules to materials: pathways to artificial photosynthesis. Springer International Publishing, Cham, pp 71–98

    Google Scholar 

  3. Arellano LM et al (2018) Edge-on and face-on functionalized Pc on enriched semiconducting SWCNT hybrids. Nanoscale 10(11):5205–5213

    Article  CAS  Google Scholar 

  4. Imahori H, Mori Y, Matano Y (2003) Nanostructured artificial photosynthesis. J Photochem Photobiol C: Photochem Rev 4(1):51–83

    Article  CAS  Google Scholar 

  5. Jiao S, Xu Z (2015) Selective gas diffusion in graphene oxides membranes: a molecular dynamics simulations study. ACS Appl Mater Interfaces 7(17):9052–9059

    Article  CAS  Google Scholar 

  6. Xao L, Cao Y, Liu J (2014) In: Lin Z, Wang J (eds) Low-cost nanomaterials toward greener and more efficient energy applications. Green energy and technology. Springer, London

    Google Scholar 

  7. Zheng P, Liu T, Guo S (2016) Micro-nano structure hard carbon as a high performance anode material for sodium-ion batteries. Sci Rep 6(1):35620

    Article  CAS  Google Scholar 

  8. Brownson DAC, Metters JP, Banks CE. Graphene for Energy Production and Storage Applications. In: Nanotechnology for the energy challenge. pp 133–170

    Google Scholar 

  9. Chen T, Dai L (2013) Carbon nanomaterials for high-performance supercapacitors. Mater Today 16(7):272–280

    Article  CAS  Google Scholar 

  10. De S, Luque R (2016) Nanomaterials for the production of biofuels. In: Li Q (ed) Nanomaterials for sustainable energy. Springer International Publishing, Cham, pp 559–582

    Chapter  Google Scholar 

  11. Bhalla A et al (2013) Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour Technol 128:751–759

    Article  CAS  Google Scholar 

  12. Srivastava N et al (2017) Nanomaterials for biofuel production using lignocellulosic waste. Environ Chem Lett 15(2):179–184

    Article  CAS  Google Scholar 

  13. Srivastava N et al (2015) Improved production of reducing sugars from rice straw using crude cellulase activated with Fe3O4/Alginate nanocomposite. Bioresour Technol 183:262–266

    Article  CAS  Google Scholar 

  14. Rackley SA (2017) 1 – Introduction. In: Rackley SA (ed) Carbon capture and storage, 2nd edn. Butterworth-Heinemann, Boston, pp 3–21

    Chapter  Google Scholar 

  15. Rackley SA (2017) 11 – Introduction to geological storage. In: Rackley SA (ed) Carbon capture and storage, 2nd edn. Butterworth-Heinemann, Boston, pp 285–304

    Chapter  Google Scholar 

  16. Babu DJ et al (2017) Understanding the influence of N-doping on the CO2 adsorption characteristics in carbon nanomaterials. J Phys Chem C 121(1):616–626

    Article  CAS  Google Scholar 

  17. Awad A et al (2018) Latent and sensible energy storage enhancement of nano-nitrate molten salt. Sol Energy 172:191–197

    Article  CAS  Google Scholar 

  18. Gogotsi Y (2014) What nano can do for energy storage. ACS Nano 8(6):5369–5371

    Google Scholar 

  19. Kostogrud IA, Boyko EV, Smovzh DV (2018) The main sources of graphene damage at transfer from copper to PET/EVA polymer. Mater Chem Phys 219:67–73

    Article  CAS  Google Scholar 

  20. Olabi AG et al (2021) Application of graphene in energy storage device – a review. Renew Sust Energ Rev 135:110026

    Article  CAS  Google Scholar 

  21. Shaari N, Kamarudin SK (2017) Graphene in electrocatalyst and proton conductiong membrane in fuel cell applications: an overview. Renew Sust Energ Rev 69:862–870

    Article  CAS  Google Scholar 

  22. Zhang S et al (2020) Measuring the specific surface area of monolayer graphene oxide in water. Mater Lett 261:127098

    Article  CAS  Google Scholar 

  23. Anandan S, Madhavan J, Ashokkumar M. The Contribution of Nanotechnology to hydrogen production. In: Nanotechnology for the energy challenge. pp 233–258. Weinheim, Germany

    Google Scholar 

  24. Mao SS, Shen S, Guo L (2012) Nanomaterials for renewable hydrogen production, storage and utilization. Prog Nat Sci Mater Int 22(6):522–534

    Article  Google Scholar 

  25. Boateng E, Chen A (2020) Recent advances in nanomaterial-based solid-state hydrogen storage. Mater Today Advances 6:100022

    Article  Google Scholar 

  26. Xia Y, Yang Z, Zhu Y (2013) Porous carbon-based materials for hydrogen storage: advancement and challenges. J Mater Chem A 1(33):9365–9381

    Article  CAS  Google Scholar 

  27. Yuan Y et al (2016) Thermal performance enhancement of palmitic-stearic acid by adding graphene nanoplatelets and expanded graphite for thermal energy storage: a comparative study. Energy 97:488–497

    Article  CAS  Google Scholar 

  28. Park S et al (2014) Magnetic nanoparticle-embedded PCM nanocapsules based on paraffin core and polyurea shell. Colloids Surf A Physicochem Eng Asp 450:46–51

    Article  CAS  Google Scholar 

  29. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32(3):510–519

    Article  CAS  Google Scholar 

  30. Geisz JF et al (2020) Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nat Energy 5(4):326–335

    Article  CAS  Google Scholar 

  31. Stephen M, Goodnick NF, Honsberg C (2013) In: Korkin DJLA (ed) Nanoscale applications for information and energy systems. Springer, New York

    Google Scholar 

  32. Chuang C-HM et al (2014) Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat Mater 13(8):796–801

    Article  CAS  Google Scholar 

  33. Champier D (2017) Thermoelectric generators: a review of applications. Energy Convers Manag 140:167–181

    Article  Google Scholar 

  34. Thermal-Electrical Energy conversion from the nanotechnology perspective. In: Nanotechnology for the energy challenge. pp 57–87

    Google Scholar 

  35. Lin Y-M, Sun X, Dresselhaus MS (2000) Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires. Phys Rev B 62(7):4610–4623

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Beltran-Chacon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Beltran-Chacon, R. (2021). Roadmap of Nanomaterials in Renewable Energy. In: Kharissova, O.V., Martínez, L.M.T., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_26-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_26-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Roadmap of Nanomaterials in Renewable Energy
    Published:
    18 March 2021

    DOI: https://doi.org/10.1007/978-3-030-11155-7_26-2

  2. Original

    Synthesis of Heterocycles Over Nanoporous Zeolites
    Published:
    08 December 2020

    DOI: https://doi.org/10.1007/978-3-030-11155-7_26-1