Skip to main content

Knowledge Distillation for Semi-supervised Domain Adaptation

  • Conference paper
  • First Online:
OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging (OR 2.0 2019, MLCN 2019)

Abstract

In the absence of sufficient data variation (e.g., scanner and protocol variability) in annotated data, deep neural networks (DNNs) tend to overfit during training. As a result, their performance is significantly lower on data from unseen sources compared to the performance on data from the same source as the training data. Semi-supervised domain adaptation methods can alleviate this problem by tuning networks to new target domains without the need for annotated data from these domains. Adversarial domain adaptation (ADA) methods are a popular choice that aim to train networks in such a way that the features generated are domain agnostic. However, these methods require careful dataset-specific selection of hyperparameters such as the complexity of the discriminator in order to achieve a reasonable performance. We propose to use knowledge distillation (KD) – an efficient way of transferring knowledge between different DNNs – for semi-supervised domain adaption of DNNs. It does not require dataset-specific hyperparameter tuning, making it generally applicable. The proposed method is compared to ADA for segmentation of white matter hyperintensities (WMH) in magnetic resonance imaging (MRI) scans generated by scanners that are not a part of the training set. Compared with both the baseline DNN (trained on source domain only and without any adaption to target domain) and with using ADA for semi-supervised domain adaptation, the proposed method achieves significantly higher WMH dice scores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oliver, A., Odena, A., Raffel, C.A., Cubuk, E.D., Goodfellow, I.: Realistic evaluation of deep semi-supervised learning algorithms. In: Advances in Neural Information Processing Systems, pp. 3239–3250 (2018)

    Google Scholar 

  2. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  3. Lopez-Paz, D., Bottou, L., Schölkopf, B., Vapnik, V.: Unifying distillation and privileged information. arXiv preprint arXiv:1511.03643 (2015)

  4. Hoffman, J., Rodner, E., Donahue, J., Darrell, T., Saenko, K.: Efficient learning of domain-invariant image representations. arXiv preprint arXiv:1301.3224 (2013)

  5. Karani, N., Chaitanya, K., Baumgartner, C., Konukoglu, E.: A lifelong learning approach to brain MR segmentation across scanners and protocols. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 476–484. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_54

    Chapter  Google Scholar 

  6. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7167–7176 (2017)

    Google Scholar 

  7. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35

    Chapter  Google Scholar 

  8. Hoffman, J., et al.: Cycada: cycle-consistent adversarial domain adaptation. arXiv preprint arXiv:1711.03213 (2017)

  9. Kamnitsas, K., et al.: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 597–609. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_47

    Chapter  Google Scholar 

  10. Gupta, S., Hoffman, J., Malik, J.: Cross modal distillation for supervision transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2827–2836 (2016)

    Google Scholar 

  11. Huang, R., Noble, J.A., Namburete, A.I.L.: Omni-supervised learning: scaling up to large unlabelled medical datasets. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 572–580. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_65

    Chapter  Google Scholar 

Download references

Acknowledgements

This project has received funding from the EU H2020 under the Marie Skłodowska-Curie grant agreement No 721820.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Orbes-Arteainst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Orbes-Arteainst, M. et al. (2019). Knowledge Distillation for Semi-supervised Domain Adaptation. In: Zhou, L., et al. OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging. OR 2.0 MLCN 2019 2019. Lecture Notes in Computer Science(), vol 11796. Springer, Cham. https://doi.org/10.1007/978-3-030-32695-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32695-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32694-4

  • Online ISBN: 978-3-030-32695-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics