Skip to main content

Bioconversion of Lignocellulosic Residues into Single-Cell Protein (SCP) by Chaetomium

  • Chapter
  • First Online:
Recent Developments on Genus Chaetomium

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Single Cell Protein (SCP) is a term coined in the 1960’s to embrace microbial biomass products which were produced by fermentation. SCP production technologies arose as a promising way to solve the problem of worldwide protein shortage. They evolved as bioconversion processes which turned low value by-products, often wastes, into products with added nutritional and market value. Intensive research into fermentation science and technology for biomass production, as well as feeding, has resulted in a profound body of knowledge, the benefits of which now span far beyond the field of SCP production. Microbial sources of single-cell proteins are presented in this chapter. Various bacteria, filamentous fungi, yeast and algae have been used for the production of single-cell proteins. Methods for cultivation of microorganisms for single-cell protein production and bioconversion of lignocellulosic residues into a single-cell protein are presented in this chapter with special reference to genus Chaetomium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adedayo MR, Ajiboye EA, Akintunde JK, Odaibo A (2011) SCP: as nutritional enhancer. J Microbiol 2(5):396–409

    CAS  Google Scholar 

  • Ahlam AW (2005) Microbiological conversion of waste fruits and vegetables into ethanol. Ph.D. thesis. University of Punjab, Lahore

    Google Scholar 

  • Ahmed S, Ahmad F, Hashmi AS (2010) Production of microbial biomass protein by sequential culture fermentation of Arachniotus sp. and Candida utilis. Pak J Bot 42(2):1225–1234

    Google Scholar 

  • Almeida A (1991) Produção de proteina microbiana a partir de a partir de hidrolisado hemicelul6sico de Palha-de-arroz. M.Sc. thesis. Universidade Federal de Viqosa, Viqosa

    Google Scholar 

  • Almeida e Silva JB, de Mancilha IM, Vannetti MCD, Teixeira MA (1995) Microbial protein production by Paecilomyces variotii cultivated in eucalyptus hemicellulosic hydrolyzate. Bioresour Technol 82:197–200

    Article  CAS  Google Scholar 

  • Almeida e Silva JB, Lima UA, Taqueda MES (2003) Use of response surface methodology for selection of nutrient levels for culturing Paecilomyces variotii in eucalyptus hemicellulosic hydrolyzate. Bioresour Technol 87:45–50

    Article  CAS  PubMed  Google Scholar 

  • Alriksson B, Hörnberg A, Gudnason AE, Knobloch S, Arnason J, Johansson R (2014) Fish feed from wood. Nordic Wood Biorefinery Conference, Stockholm

    Google Scholar 

  • Andersen BR, Andersen JB, Jorgensen SB (2005) U-loop reactor modelling for optimization, part 63: estimation of heat loss. J Environ Issues 9:88–90

    Google Scholar 

  • Anupama, Ravindra P (2000) Value-added food: single cell protein. Biotechnol Adv 18:459–479

    Article  CAS  PubMed  Google Scholar 

  • Araujo A, D’Souza J (1986) Enzymatic saccharification of pretreated rice straw and biomass production. Biotechnol Bioeng 28:15039

    Article  Google Scholar 

  • Arora D, Mukerji K, Marth E (1991) Single cell protein in hand book of applied mycology. J Am Sci 18(499):539

    Google Scholar 

  • Asad MJ, Asghar M, Yaqub M, Shahzad K (2000) Production of single cell protein from delignified corn cob by Arachniotus species. Pak J Agri Sci 37:3–4

    Google Scholar 

  • Ashok RS, Nigam P, Vanete T, Luciana PS (2000) Bio resource technology. J Am Sci 16(8):35

    Google Scholar 

  • Azzam AM (1992) Production of metabolites, industrial enzymes, amino acids. J Environ Sci Eng 56(67):99

    Google Scholar 

  • Bajpai P (2016) Pretreatment of lignocellulosic biomass for biofuel production. SpringerBr Gr Chem Sustain. https://doi.org/10.1007/978-981-10-0687-6

    Book  Google Scholar 

  • Bajpai P, Bajpai PK (1986) Cultivation of yeasts from the Prehydrolysate of a Rayon Pulp Mill Enzyme. Microbiol Technol 8(10):610

    Article  CAS  Google Scholar 

  • Bajpai P, Bajpai PK (1987) Single cell protein production from Rayon Pulp Mill waste by Paecilomyces variotii. J Ferment Technol 65(3):349

    Article  CAS  Google Scholar 

  • Bajpai P, Bajpai PK (1988) Repeated batch fermentation for SCP production from Prehydrolysate of Pulp Mill. Enzyme Microbial Technol 10(5):280. S. N. & Mor

    Article  CAS  Google Scholar 

  • Bajwa MA, Aziz T, Hashmi AS (1991) Production of fungal biomass protein from alkali-treated rice straw by Arachniotus sp. J Anim Plant Sci 1(2):79–81

    Google Scholar 

  • Bakshi MPS, Jangar PN (1991) Agaricus bisporus sharvested spent wheat straw as livestock feed Indian. J Anim Sci 61(6):653–654

    Google Scholar 

  • Bamberg JH (2000) British petroleum and global oil 1950–1975: the challenge of nationalism, vol. 15. Cambridge University Press, Cambridge, UK, pp 445–478

    Google Scholar 

  • Banerjee UC, Chisti Y, Moo-Young M (1995) Effects of substrate particle size and alkaline pretreatment on protein enrichment by Neurospora sitophila. Resour Conserv Recycl 13(2):139–146

    Article  Google Scholar 

  • Bhalla TC, Joshi M (1994) Protein enrichment of apple pomace by co-culture of cellulolytic moulds and yeasts. World J Microbiol Biotechnol 10(1):116–117

    Article  CAS  PubMed  Google Scholar 

  • Bhalla TC, Gajju H, Agrawal HO (1999) Production of single-cell proteins. In: Joshi VK, Pandey AK (eds) Biotechnology: food fermentation, microbiology, biochemistry and technology. Educational Publishers and Distributers, New Delhi, pp 1003–1022

    Google Scholar 

  • Bhalla TC, Sharma NN, Sharma M (2007) Production of metabolites, industrial enzymes, amino acid, organic acids, antibiotics, vitamins and single cell proteins. National Science Digital Library, India

    Google Scholar 

  • Bhalla TC, Mehta PK Savitri, Bhatia SK, Pratush A (2009) Microorganism for food and Feed. https://www.researchgate.net/…/303941522

  • Cabib G, Silva HJ, Giulietti A, Ertola R (1983) The use of sugar cane stillage for single cell protein production. J Chem Technol Biotechnol 33:21–28

    Article  Google Scholar 

  • Callihan CD, Clemmer JE (1979a) Biomass from cellulosic materials. In: Rose AH (ed) Microbial biomass-economic microbiology. Academic Press, London, pp 271–273

    Google Scholar 

  • Callihan CD, Clemmer JE (1979b) Biomass from cellulosic materials. In: Rose A (ed) Microbial biomass-economic microbiology, vol 4. Academic Press, New York, pp 271–288

    Google Scholar 

  • Capalbo FH, Moraes IO, Pelizer MH (2001) Solid-state fermentation of Bacillus thuringiensis- tolworthi to control fall armyworm in maize. Electron J Biotechnol 4(2):1–5

    Google Scholar 

  • Castlla RB, Waehner RS, Giulietti AM (1984) Aerobic microbial treatment of sugarcane stillage by Candida utilis and Paecilomyces variotii in two step continuous cultures. Biotechnol Lett 121:195–198

    Article  CAS  Google Scholar 

  • Chahal DS, Moo-Young M, Vlach D (1981) Effect of physical and physicochemical pretreatments of wood for SCP production with Chaetomium. Biotechnol Bioeng 23:2417–2420

    Google Scholar 

  • Chanda S, Chakrabarti S (1996) Plant origin liquid waste, a source for single cell protein production by yeast. Bioresour Technol 57:51–54

    Article  CAS  Google Scholar 

  • Chandrani-Wijeyaratne S, Tayathilake AN (2000) Characteristics of two yeast strain (Candida tropicalis) isolated from Caryotaurens (Khitul) toddy for single cell protein production. J Natl Sci Found Sri Lanka 28:79–86

    Article  CAS  Google Scholar 

  • Chaudhary N (2008) Designing microbial consortium for ethanol production from sugarcane bagasse. Ph.D. Thesis. University of the Punjab, Lahore

    Google Scholar 

  • Chaudhary N, Sharma CB (2005) Production of citric acid and single cell protein from agrowaste. Natl Acad Sci Lett 28:189–193

    CAS  Google Scholar 

  • Chen H, Liu J, Li Z (1999) Production of single cell protein by fermentation of extract from hemicellulose autohydrolyzate. Eng Chem Metall 20(4):428–431

    CAS  Google Scholar 

  • Chen Q, Liu J, Cai H (2000a) Bioconversion of natural cellulose materials by multi-strains co-fermentation systems. J Tianjin Univ Commer 20(3):1–6

    Google Scholar 

  • Chen Q, Liu J, Li T (2000b) Establishment of multi-strain co-fermentation system and bioconversion of maize stalk. Guangzhou Chemical Industry 28(4):27, 69–27, 73

    Google Scholar 

  • Cooney CL (1986) Continuous culture: a tool for research, development and production. In: Alanl DI, Moo-Young M (eds) Perspectives in biotechnology and applied microbiology. Elsevier Applied Science, London, pp 271–276

    Chapter  Google Scholar 

  • Deibel MR, Hiebsch RR, Klein RD (1988) Secreted amylolytic enzymes from Schwanniomyces occidentalis: purification by fast protein liquid chromatography (FPLC) and preliminary characterization. Prep Biochem 18(1):77–120

    Article  CAS  PubMed  Google Scholar 

  • Dhanda S, Kakkar VK, Garcha HS, Makkar GS (1994) Biological treatment of paddy straw and its evaluation through ruminant feeding. Indian J Anim Nutr 11(2):73–79

    Google Scholar 

  • Dimmling W, Seipenbusch R (1978) Raw materials for the production of SCP. Proc Biochem 131:9–15

    Google Scholar 

  • el-Saadany R, Khalaf H, el-Manawaty H, Salom F (1988) The production of single cell protein from agricultural wastes by fungi. Acta-Aliment. Acad Sci Hung 17(4):376–377

    Google Scholar 

  • Ekerott L, Villadseer J (1991) Biotechnology 18:205–231

    Google Scholar 

  • Ellis DH (1981) Ascocarp morphology and terminal hair ornamentation in thermophilic Chaetomium species. Mycologia 73:755–773

    Article  Google Scholar 

  • El-Nawwi SA, Abd El-Kader A (1996) Production of single-cell protein and cellulase from sugarcane bagasse: effect of culture factors. Biomass Bioenergy 11(4):361–364

    Article  CAS  Google Scholar 

  • Farstad L, Liven E, Fiatlandsmo E, Ness B (1975) Effect of feeding Pekilo single cell protein in various concentrations to growing pigs. Acta Agricultures Scandinavica

    Google Scholar 

  • Ferrianti MP, Fiechter A (1983) Production and feeding of single cell protein. Applied Science Publications, London, ISBN: 085334231, p 201

    Google Scholar 

  • Forage AJ, Righelato RC (1979) Biomass from carbohydrates. In: Rose AH (ed) Microbial biomass-economic microbiology. Academic Press, New York, pp 289–292

    Google Scholar 

  • Gabriel A, Ntuli V, James D (2014) C1Cactus pear biomass, a potential lignocellulose raw material for Single Cell Protein production (SCP). Int J Curr Microbiol Appl Sci 3(7):171–197

    Google Scholar 

  • Ghanem KM (1992a) Single cell protein production from beet-pulp by mixed culture. Microbiologia 8(1):39–43

    CAS  PubMed  Google Scholar 

  • Ghanem KM (1992b) Single cell protein production from beet pulp by mixed culture. Qatar Univ Sci J 12:85–88

    CAS  Google Scholar 

  • Giec A, Skupin J (1988) Single cell protein as food and feed. Nahrung 32(3):219–229

    Article  CAS  PubMed  Google Scholar 

  • Gonzales-Valdez A, Moo-Young M (1981) Production of yeast SCP from corn stover hydrolysate. Biotechnol Lett 3:148–153

    Article  Google Scholar 

  • Gupte A, Madamwar D (1997) Solid state fermentation of lignocellulosic waste for cellulase and beta-glucosidase production by cocultivation of Aspergillus ellipticus and Aspergillus fumigatus. Biotechnol Prog 13:166–169

    Article  CAS  Google Scholar 

  • Guven M, Cansunar E (1989) Single cell protein production and reduction of pollutants in waste sulphite liquor. Mikrobiyol Bul 23(4):329–335

    CAS  PubMed  Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Article  PubMed  CAS  Google Scholar 

  • Hashmi AS, Batajoo KK, Bajwa MA (1991) Bioconversion of rice straw into protein concentrate with Arachniotus sp. Proceedings of International Symposium on Biotechnology for Energy 16–21 Dec 1969. Faisalabad, pp. 149–155

    Google Scholar 

  • Hongpattarakere T, Kittikun AH (1995) Optimization of single-cell-protein production from cassava starch using Schwanniomyces castellii. Biomed Life Sci 11:607–609

    Article  CAS  Google Scholar 

  • Hu Z, Que Y, Gao Y, Yin Y, Yufen Zhao Y (2015) Using black liquor from the soda pulping process for protein production by Candida utilis. Bioresources 10(3):3908–3921

    Google Scholar 

  • Ibrahim Rajoka M, Kiani MA, Sohail TK (2004) Production of single cell protein from rice polishing using Candida utilis. World J Microbiol Biotechnol 20(3):297–301

    Article  Google Scholar 

  • Invarson KC, Morita H (1982) Single cell protein production by the acid tolerant fungus, Scytalidium acidophilum from acid hydrolysates of waste paper. Appl Environ Microbiol 43:643–647

    Google Scholar 

  • Israelidis CJ, Coduonis MI (1982) Utilisation of agricultural wastes for animal feed and energy. Agr Res 6:243–253

    Google Scholar 

  • Jaganmohan P, Purushottam B, Prasad SV (2013) Production of SCP with Aspergillus terrus using Solid State fermentation. Eur J Biol Sci 5(2):38–45

    Google Scholar 

  • Jorgensen JB (2010) Systematic model analysis for single cell protein (SCP), production in a U-loop reactor. In: 20th European symposium on computer aided process engineering escape. Am- Eur J Agric Environ Sci 20:79–90

    Google Scholar 

  • Kamel BS (1979) Utilization of date carbohydrate as substrate in microbial fermentation. Proc Biochem 14:95–100

    Google Scholar 

  • Kim JH, Lebeault JM (1981) Protein production from whey using Penicillium cyclopum: growth parameters and cellular composition. Eur J Appl Microbiol Biotechnol 13:151–154

    Google Scholar 

  • Kolani S, Delgenes JP, Moletta R, Traore A, Doh A (1996) Optimization of cell yield of Candida krusei SO1 and Saccharomyces sp. LK3G cultured in sorghum hydrolysate. Biores Technol 57(3):275–281

    Google Scholar 

  • Kumar P, Barret DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  • Litchfield JH (1979) Production of single cell protein for use in food and feed. In: Peppler HJ, Perlman D (eds) Microbial technology, vol. I, 2nd edn. Academic Press, New York, pp 93–35

    Google Scholar 

  • Lo SN, Moreau JR (1986) Mixed culture microbial protein from waste sulfite pulping liquor II. Its production on pilot plant scale and use in animal feed. Can J Chem Eng 64:639–646

    Article  Google Scholar 

  • Mahasneh IA (1997) Production of single cell protein from five strains of Chlorella spp. (Chlorophyta). Cytobios 90:153–161

    Google Scholar 

  • Miller TF, Srinivasan VR (1983) Production of single cell protein by Aspergillus terreus. Biotechnol Bioeng 25:1509–1519

    Google Scholar 

  • Molina OE, Perotti de Gálvez NI, Frigerio CI, Córdoba PR (1984) Planta piloto de Procesos Industrials microbiologicos, PROIMI, Avda Belgrano y Pje Caseros, 4000 S.M. de Tucumán, Argentina

    Google Scholar 

  • Mondal AK (2006) Production of single cell protein from fruits waste by using Saccharomyces cerevisiae. Am J Food Technol 58(117):134

    Google Scholar 

  • Mondal AK, Sengupta S, Bhowal J, Bhattacharya DK (2012) Utilization of fruit wastes in producing single cell protein. Int J Sci Environ Technol 1:430–438

    Google Scholar 

  • Moo-Young MY, Chisti U, Vlach D (1992) Fermentativc conversion of cellulosic substrates into microbial protein by Neurospora gitophila. Biotech Lett 1–l(9):863–868

    Google Scholar 

  • Nasseri AT, Rasoul-Amini S, Morowvat MH, Ghasemi Y (2011) Single cell protein: production and process. Am J Food Technol 6(2):103–116

    Article  CAS  Google Scholar 

  • Nigam JN (2000) Cultivation of Candida langeronii in sugar cane bagasse hemicellulosic hydrolyzate for the production of single cell protein. World J Microbiol Biotechnol 16:367–158

    Google Scholar 

  • Nigam P, Singh D (1994) Solid state (substrate) fermentation systems and their applications in biotechnology. J Basic Microbiol 34:405–414

    Article  CAS  Google Scholar 

  • Oura E (1983) Biomass from carbohydrates. In: Rehm H-J, Reed G (eds) Biotechnology, 3rd edn. Verlag Chemie, Weinheim, p 3

    Google Scholar 

  • Pandey A, Soccol CR (1998) Bioconversion of biomass: a case study of lignocellulosic bioconversion in solid state fermentation. Brazilian Arch Biol Technol 1998(41):379–390

    Article  Google Scholar 

  • Paynor KA, David ES, Valentino MJG (2016) Endophytic fungi associated with bamboo as possible sources of single cell protein using corn cob as a substrate. Mycosphere 7(2):139–147

    Article  Google Scholar 

  • Perez JM, Rodriguez F, Alonso MV, Oliet M, Echeverria JM (2002) Characterization of a novolac resin substituting phenol by ammonium lignosulfonate as filler or extender. Bio Res 2:270–283

    Google Scholar 

  • Pessoa A Jr (1991) Producao de biomassa microbiana a partir de hidrolisado hemicelulosico de cana-de aqficar. M.Sc. thesis. Universidade de Sao Paulo, Sao Paulo

    Google Scholar 

  • Pessoa A Jr, Mancilha IM, Sato S (1996) Cultivation of Candida tropicalis in sugar cane hemicellulosic hydrolyzate for microbial protein production. J Biotechnol 51:83–88

    Article  CAS  Google Scholar 

  • Rao M, Vaema AJ, Deshmukh SS (2003) Production of single cell protein, essential amino acids, and xylanase by Penivillium janthinellum. Bio Resour 5:2470–2477

    Google Scholar 

  • Rathoure AK (2014) In: Harzevili FD, Chen H (eds) Microbial biotechnology, progress and trends. CRC Press, Boca Raton, pp 279–296. https://doi.org/10.1201/b17587-13.,

    Chapter  Google Scholar 

  • Rhishipal R, Philip R (1998) Selection of marine yeast for generation of single cell protein from prawn shell wastes. Bioresour Technol 65:255–256

    Article  CAS  Google Scholar 

  • Rodriguez H, Gallardo R (1993) Single cell protein from bagasse pith by a mixed bacterial culture. Acta Biotechnol 13:141–149

    Article  CAS  Google Scholar 

  • Rodriguez H, Alvarez R, Enriquez A (1993) Evaluation of different alkali treatments of bagasse pith for cultivation of Cellulomonas sp. World J Microbiol Biotechnol 9:213–215

    Google Scholar 

  • Rodriguez J, Ferraz A, Nogueira RF, Ferrer I, Esposito E, Duran N (1997) Lignin biodegradation by the ascomycete Chrysonilia sitophila. Appl Biochem Biotechnol 62(2–3):233–242

    Article  PubMed  Google Scholar 

  • Rodriguez-Vazquez R, Diaz-Cervantes D (1994) Effect of chemical solutions sprayed on sugarcane bagasse pith to production single cell protein: physical and chemical analyses of pith. Bioresour Technol 47:159–164

    Article  CAS  Google Scholar 

  • Rodriguez-Vazquez R, Villanuevaventure G, Riosleal E (1992) Sugar cane bagasse pith dry pretreatment for single cell protein production. Bioresour Technol 39:17–22

    Article  CAS  Google Scholar 

  • Romantschuk H (1974) The Pekilo Process: proteins from spent sulphur liquor. In: Tannenbaunl SR, Wang DIC (eds) Single cell protein, vol. 2. MIT’ Press, Cambridge, MA, pp 344–357

    Google Scholar 

  • Romantschuk H (1976) The Pekilo process: a development project. 6th international symposium on continuous culture of microorganisms. Society of Chemical Industry

    Google Scholar 

  • Romantschuk H, Lehtomaki M (1978) Operational experiences of first full-scale Pekilo SCP mill application. Process Biochem 3(16–19):29

    Google Scholar 

  • Saliceti-Piazza L, Dale MC, Moelhman M, Ooks MR, Wankat PC (1992) Free and immobilized yeasts for BOD reduction in dairy wastes: growth on low levels of lactose, lactic acid and glycerol. Annual Meeting, Paper No. 165 k, AlChE; Miami FL, Scerra V, Caridi A, Foti F, Sinatra MC (1999) Influence of dairy Penicillium spp. on nutrient content of citrus fruit peel. Anim Feed Sci Technol 78:169–176

    Google Scholar 

  • Samadi S, Mohammadi M, Najafpour Darzi G (2016) Production of single cell protein from sugarcane bagasse by Saccharomyces cerevisiae in tray bioreactor. IJE Trans B: App 29(8):1029–1036

    Google Scholar 

  • Scerra V, Caridi A, Foti F, Sinatra MC (1999) Influence of dairy Penicillium spp. on nutrient content of citrus fruit peel. Anim Feed Sci Technol 78:169–176

    Article  CAS  Google Scholar 

  • Scrimshaw NS, Dillen JC (1977) Single cell protein as food and feed. In: Garattini S, Paglialunga S, Scrimshaw NS (eds) Single cell protein-safety for animal and human feeding. Pergamon Press, Oxford, UK, pp 171–173

    Google Scholar 

  • Shahzad MA, Rajoka MI (2011) Single cell protein production from Aspergillus terreus and its evaluation in broiler chick. Int J Biosci, Biochem Bioinform 1(2):137

    Google Scholar 

  • Shipman RH, Kao IC, Fan LT (1975) Single cell protein production by photosynthetic bacteria cultivation in agricultural byproducts. Biotechnol Bioeng 17:1561–1570

    Article  CAS  Google Scholar 

  • Shuler ML, Roberts ED, Mitchell DW, Kargi F, Austic RE, Henry A, Vashon R, Seeley HR (1979) Process for aerobic conversion of poultry manure into high protein feed stuff. Biotechnol Bioeng 21:19–38

    Article  CAS  Google Scholar 

  • Silva JBA (1991) Utilizar∗o do hindrolisado hemicelul6sico de eucalipto para produq∗o de protein microbiana. M.Sc. thesis. Universidade Federal de Viqosa, Viscosa

    Google Scholar 

  • Sinclair CG, Cantero D (1990) Fermentation modelling. In: McNeil B, Harvey LM (eds) Fermentation: a practical approach. IRL Press, Oxford, UK, pp 65–113

    Google Scholar 

  • Sindhu MS, Sandhu DK (1980) Single-cell protein production by Trichoderma longibrachiatum on treated sugarcane bagasse. Biotechnol Bioeng 22:689–692

    Google Scholar 

  • Singh BD (1998) Biotechnology. Kalyani Publishers, New Delhi, pp 498–510

    Google Scholar 

  • Singh A, Abidi AB, Darmwal NS, Agrawal AK (1988) Evaluation of chemical pre-treatment for biodegradation of agricultural lignocellulosic wastes by Aspergillus niger. MIRCEN J Appl Microb 4:473–479

    Article  CAS  Google Scholar 

  • Singh A, Abidi AB, Agarwal AK, Dharmwal NS (1991) Single cell protein production from Aspergillus niger and its evaluation. Zentralbl-Mikrobiol 146(3):181–184

    Google Scholar 

  • Singhania AK, Soccol CR, Pandey A (2009) Recent advances in solid state fermentation. Biochemist Eng J\(667):789

    Google Scholar 

  • Soland L (2005) Characterization of liquid mixing and dispersion in a U-loop fermentor. Am-Eur J Agric Environ Sci 67(99):109

    Google Scholar 

  • Solomons GL (1985) Production of biomass by filamentous fungi. In: Blanch HW, Drew S, DIC W (eds) Comprehensive biotechnology. Pergamon Press, Oxford, UK, pp 483–505

    Google Scholar 

  • Srividya AR, Vishnuvarthan VJ, Murugappan M, Dahake PG (2013) Single cell protein: a review. Int J Pharmaceut Res Scholars 2:472–485

    Google Scholar 

  • Stanbury PF, Whitaker A, Hall SJ (2000) Principles of fermentation technology, 2nd edn. Elsevier, Oxford, UK

    Google Scholar 

  • Staron TJ (1981) Production of proteins by mycological process. Br Pat 1604781

    Google Scholar 

  • Steen A (2014) Production of single cell protein from residual streams from 2nd generation bioethanol production. Master of Science Thesis. Royal Institute of Technology, Sweden

    Google Scholar 

  • Steinkraus KH (1986) Microbial biomass protein grown on edible substrates: the indigenous fermented foods. In: Moo-Young M, Gregory KF (eds) Microbial biomass protein. Elsevier Applied Science, London, pp 35–45

    Google Scholar 

  • Suman G, Nupur M, Anuradha S, Pradeep B (2015) Single cell protein production: a review. Int J Curr Microbiol Appl Sci 4:251–262

    Google Scholar 

  • Talebnia F (2008) Ethanol production from cellulosic biomass by encapsulated Saccharomyces cerevisiae, vol. 334. Ph.D. Thesis. Chalmers University of Technology, Gothenburg, pp 113–145

    Google Scholar 

  • Tanaka M, Matsuno R (1985) Conversion of lignocellulosic materials to single cell protein, recent developments and problems. Enzym Microb Technol 7:197–206

    Article  CAS  Google Scholar 

  • Tannenbaum SR, Wang DIC (1975) Single cell protein, vol II. MIT Press, Cambridge, MA

    Google Scholar 

  • Tengerdy RP (1985) Solid state fermentation. Trends Biotechnol 3(4):96–99

    Article  Google Scholar 

  • Tengerdy RP, Szakacs G (2003) Bioconversion of lignocellulose in solid substrate fermentation. Biochem Eng J 13:169–179

    Article  CAS  Google Scholar 

  • Tong Y, Wang X, Song S (1995) Exploitation study on sawdust used to feed. Exploit Farm Produce 10:20–21

    Google Scholar 

  • Trehan K (1993) Biotechnology. Wiley Eastern Limited, New Delhi, pp 79–88

    Google Scholar 

  • Ugalde UO, Castrillo JI (2002) Single cell proteins from fungi and yeasts. Appl Myco Biotechnol 186:123–149

    Article  Google Scholar 

  • Ukaegbu-Obi KM (2016) Single Cell protein: a resort to global protein challenge and waste management. J Microbiol Microb Technol 1(1):5

    Google Scholar 

  • Vashista BR (1989) Botany for degree students-Algae. S. Chand and Co., Ltd., New Delhi, pp 503–514

    Google Scholar 

  • Vibha, Sinha A (2005) Production of soluble crude protein using cellulolytic fungi on rice stubble as substrate under waste program management. Microbiol 33(3):147–149

    CAS  Google Scholar 

  • Wang C, Bian Q (1999) Study on improving feed yeast quality and action efficiency. Feed Study 189:6–9

    Google Scholar 

  • Wang C, Ding Y, Xiao C (2001) Production of high enzyme activity SCP from cellulose material. Ind Microbiol 31(1):30–33

    CAS  Google Scholar 

  • Ware SA (1977) Single cell protein and other food recovery technologies from wastes. Municipal Environmental Research Laboratory Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati

    Google Scholar 

  • Weitzel W, Winchel M (1932) The yeast its nutritive and therapeutic value. Verlag Rothgiese und Diesing, Berlin

    Google Scholar 

  • Wong PK, Chan K (1980) Algal single cell protein production from sewage effluents with high salinity. Experientia 36(9):1065–1066

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Ma L (2002) Fermentation production of single cell protein by utilizing bagasse as the sole carbon source. J Hubei Agri Coll 22(2):150–152

    Google Scholar 

  • Yakoub Khan M, Umar Dahot M (2010) Effect of various agriculture wastes and pure sugars on the production of single cell protein by Penicillium Expansum. World Appl Sci J 8:80–84

    CAS  Google Scholar 

  • Yunus F, Nadeem M, Rashid F (2015) Single-cell protein production through microbial conversion of lignocellulosic residue (wheat bran) for animal feed. J Inst Brew 121(4):553–555

    Article  CAS  Google Scholar 

  • Zadrazil F, Puniya AK (1995) Studies on effect of particle size on solid state fermentation of sugarcane bagasse into animal feed using white rot fungi. Bioresour Technol 54:85–87

    Article  CAS  Google Scholar 

  • Zayed G, Mostafa N (1992) Studies on the production and kinetic aspects of single cell protein from sugar cane bagasse saccharified by Aspergillus niger. Biomass Bioenergy 3(5):363–367

    Article  CAS  Google Scholar 

  • Zhang D, Zhang R, Zhang T (2003) Preparation of cellulase and SCP by mixed fermentation of Trichoderma viride and Candida utilis. J Innermongolia Polytech Univ 22(3):180–185

    Google Scholar 

  • Zhao L, Wang S, Ye H (2000) Application study on fish cultivating with yeast product from agricultural and forestry wastes. Feed Study 5:11–13

    Google Scholar 

  • Zubi W (2005) Production of single cell protein from base hydrolyzed of date extract byproduct by the fungus Fusarium graminearum. M.Sc. Thesis, vol 19. Garyounis University, Benghazi, pp 167–200

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Abdel-Azeem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdel-Azeem, A.M., Sheir, D.H. (2020). Bioconversion of Lignocellulosic Residues into Single-Cell Protein (SCP) by Chaetomium. In: Abdel-Azeem, A. (eds) Recent Developments on Genus Chaetomium . Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-31612-9_13

Download citation

Publish with us

Policies and ethics