Skip to main content

Does PGPR and Mycorrhizae Enhance Nutrient Use Efficiency and Efficacy in Relation to Crop Productivity?

  • Chapter
  • First Online:
Field Crops: Sustainable Management by PGPR

Abstract

With the increasing world’s population, higher demand for sustainable food production so as to meet the requirement. It has increased tremendously due to excessive use of agrochemicals. Since, the imbalanced application of agrochemicals in agricultural field leads to soil and environmental degradation. Nowadays, the scientific community has shifted their focus on alternative eco-friendly management approach. The plant growth-promoting rhizobacteria (PGPR) and mycorrhizae has huge potential to substitute agrochemicals. These efficient eco-friendly microbes have different plant growth-promoting (PGP) activities; hence PGPR and mycorrhizae are gaining importance for restoring soil sustainability and agricultural productivity. Application of these efficient microbes in the soil–plant–environment system will be suitable strategies for improving the soil and crop productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesemoye AO, Obini M, Ugoji EO (2008) Comparison of plant growth promotion with Pseudomonas aerugenosa and Bacillus subtilis in three vegetables. Brazilian J Microbiol 39:423–426

    Article  CAS  Google Scholar 

  • Adewole MB, Awotoye OO, Ohiembor MO, Salami AO (2010) Influence of mycorrhizal fungi on phytoremediating potential and yield of sunflower in Cd and Pb polluted soils. J Agric Sci 55:17–28

    Google Scholar 

  • Ahemad M, Khan MS (2012a) Evaluation of plant-growth promoting activities of rhizobacterium Pseudomonas putida under herbicide stress. Ann Microbiol 62:1531–1540

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2012b) Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica compestris) rhizosphere. Chemosphere 86:945–950

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Uni Sci 26:1–20

    Google Scholar 

  • Ahmad I, Akhtar MJ, Asghar HN, Ghafoor U, Shahid M (2016) Differential effects of plant growth-promoting rhizobacteria on maize growth and cadmium uptake. J Plant Growth Regul 35:303–315

    Article  CAS  Google Scholar 

  • Alizadeh O, Zare M, Nasr AH (2011) Evaluation effect of Mycorrhiza inoculate under drought stress condition on grain yield of sorghum (Sorghum bicolor). Adv Environ Biol 5:2361–2364

    Google Scholar 

  • Arora DR (2003) Text book of microbiology. CBS Publisher, New Delhi, pp 4–48

    Google Scholar 

  • Babalola OO, Osir EO, Sanni A, Odhaimbo GD, Bulimo WD (2003) Amplification of 1-aminocyclopropane-1-carboxylic (ACC) deaminase from plant growth promoting rhizobacteria in Striga -infested soils. African J Biotechnol 2:157–160

    Article  CAS  Google Scholar 

  • Baligar VC, Fageria NK, He Z (2001) Nutrient use efficiency in plants. Commun Soil Sci Plant Anal 31:921–950

    Article  Google Scholar 

  • Barbieri P, Echeverría HE, Saínz Rozas HR, Andrade FH (2008) Nitrogen use efficiency in maize as affected by nitrogen availability and row spacing. Agron J 100:1094–1100

    Article  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Borie F, Rubio R, Morales A (2008) Arbuscular mycorrhizal fungi and soil aggregation. In: segundo simposio internacional suelos, ecología y medioambiente universidad de la frontera (15)

    Google Scholar 

  • Buresh RJ, Rowe EC, Livesley SJ, Cadisch G, Mafongoya P (2004) Opportunities for capture of deep soil nutrients. In: Below-ground interactions in tropical agroecosystems: concepts and models with multiple plant components, pp. 109–125

    Google Scholar 

  • Choudhary M, Panday SC, Meena VS (2017a) Azolla’s cultivation and its uses in mountain ecosystem. Indian Farm 67(09):09–12

    Google Scholar 

  • Choudhary M, Patel BA, Meena VS, Yadav RP, Ghasal PC (2017b) Seed bio-priming of green gram with Rhizobium and levels of nitrogen and sulphur fertilization under sustainable agriculture. Legume Res LR-3837:1–6

    Google Scholar 

  • Choudhary M, Panday SC, Meena VS, Singh S, Yadav RP, Mahanta D, Mondal T, Mishra PK, Bisht JK, Pattanayak A (2018a) Long-term effects of organic manure and inorganic fertilization on sustainability and chemical soil quality indicators of soybean-wheat cropping system in the Indian mid-Himalayas. Agric Ecosyst Environ 257:38–46

    Article  Google Scholar 

  • Choudhary M, Panday SC, Meena VS, Yadav RP, Singh S, Mahanta D, Pattanayak A, Bisht JK (2018b) Effect of long-term fertilization and manure on soil organic carbon fraction and micronutrient status after harvest of wheat under soybean-wheat cropping system. In: Tripathi AK et al (eds) Abstracts proceeding international conference on “Sustainability of smallholder agriculture in develop-ing countries under changing climatic scenario”. CSAUAT, Kanpur (UP), India, p 98

    Google Scholar 

  • Choudhary M, Ghasal PC, Yadav RP, Meena VS, Mondal T, Bisht JK (2018c) Towards Plant-Beneficiary Rhizobacteria and Agricultural Sustainability. In: Meena V. (eds.) Role of Rhizospheric Microbes in Soil. Springer, Singapore. https://doi.org/10.1007/978-981-13-0044-8_1

  • Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) In situ phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330

    Article  CAS  PubMed  Google Scholar 

  • Dobermann A (2005) Nitrogen use efficiency-state of the art. In: Proceedings of IFA International Workshop on Enhanced-efficiency Fertilizers, Frankfurt, Germany, June 28–30(2005):1–18

    Google Scholar 

  • Dobermann A (2007) Nutrient use efficiency—measurement and management. IFA international workshop on fertilizer best management practices. Belgium, Brussels, pp 1–28

    Google Scholar 

  • Dobermann A, Cassman KG (2005) Cereal area and nitrogen use efficiency are drivers of future nitrogen fertilizer consumption. Sci China 48:745–758

    CAS  Google Scholar 

  • Fageria NK, Baligar VC (2005) Enhancing nitrogen use efficiency in crop plants. Adv Agron 88:97–185

    Google Scholar 

  • Fageria NK, Baligar VC, Li YC (2008) The role of nutrient efficient plants in improving crop yields in twenty first century. J Plant Nutr 31:1121–1157

    Article  CAS  Google Scholar 

  • Fan X, Li F, Liu F, Kumar D (2004) Fertilization with a new type of coated urea: Evaluation for nitrogen efficiency and yield in winter wheat. J Plant Nutr 27:853–865

    Article  CAS  Google Scholar 

  • Fixen PE (2005) Understanding and improving nutrient use efficiency as an application of information technology. In: Proceedings of the symposium on information technology in soil fertility and fertilizer management, a satellite symposium at the XV international plant nutrient colloquium, 14–16 September 2005, Beijing, China

    Google Scholar 

  • Foley JA (2011) Can we feed the world & sustain the planet? Sci Am 305(5):60–65

    Article  PubMed  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW et al (2008) Transformation of the nitrogen cycle: recent trends, questions and potential solutions. Science 320:889–892

    Article  CAS  PubMed  Google Scholar 

  • Gandhi A, Muralidharan G (2016) Assessment of zinc solubilizing potentiality of Acinetobacter sp. Isolated from rice rhizosphere. Euro J Soil Biol 76:1–8

    Article  CAS  Google Scholar 

  • Garnett T, Conn V, Kaiser BN (2009) Root based approaches to improving nitrogen use efficiency in plants. Plant, Cell Environ 32(9):1272–1283

    Article  CAS  Google Scholar 

  • Giovannetti M, Avio L, Fortuna P, Pellegrino E, Sbrana C, Strani P (2006) At the root of the wood wide web. Plant Signal Behavior 1:1–5

    Article  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2005) Effect of the arbuscular mycorrhizae Glomus fasciculatum and G. macrocarpum on the growth and nutrient content of Cassia siamea in a semi-arid Indian wasteland soil. New For 29:63–73

    Article  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica. http://dx.doi.org/10.6064/2012/963401, 963401

  • Guo Y, Ni Y, Huang J (2010) Effects of rhizobium, arbuscular mycorrhiza and lime on nodulation, growth and nutrient uptake of lucerne in acid purplish soil in China. Trop Grasslands 44:109–114

    Google Scholar 

  • Han HS, Supanjani S, Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52:130–136

    Article  CAS  Google Scholar 

  • He Z, He C, Zhang Z, Zou Z, Wang H (2007) Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids Surf B Biointer 59:128–133

    Article  CAS  Google Scholar 

  • Henry RC, Engstro¨m K, Olin S, Alexander P, Arneth A, Rounsevell MDA (2018) Food supply and bioenergy production within the global cropland planetary boundary. PLoS ONE 13(3):e0194695. https://doi.org/10.1371/journal.pone.0194695

  • Hungate BA, Dukes JS, Shaw MR, Luo Y, Field CB (2003) Nitrogen and climate change. Science 302:1512–1513

    Article  CAS  PubMed  Google Scholar 

  • Kaur H, Kaur J, Gera R (2016) Plant growth promoting rhizobacteria: a boon to agriculture. Int. J Cell Sci Biotechnol 5:17–22

    Google Scholar 

  • Kim J, Rees DC (1994) Nitrogenase and biological nitrogen fixation. Biochemistry 33:389–397

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Zablowicz RM, Tipping B, Lifshitz R (1991) Plant growth mediated by bacterial rhizosphere colonizers. In: Gregan B (ed) Keister DL. The rhizosphere and plant growth, BARC Symp, pp 315–326

    Google Scholar 

  • Kohler J, Caravaca F, Roldan A (2010) An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biol Biochem 42:429–434

    Article  CAS  Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under Indo-Gangetic plain of India. J Plant Growth Regul. https://doi.org/10.1007/s00344-0169663-5

  • Kundan R, Pant G, Jadon N, Agrawal PK (2015) Plant growth promoting Rhizobacteria: mechanism and current prospective. J Fertil Pestic 6:2

    Article  Google Scholar 

  • Lopez-Bellido RJ, Lopez-Bellido L (2001) Efficiency of nitrogen in wheat under Mediterranean condition: effect of tillage, crop rotation and N fertilization. Field Crop Res 71:31–64

    Article  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manag 90:831–837

    Article  Google Scholar 

  • Maheshwari DK, Kumar S, Kumar B, Pandey P (2010) Co-inoculation of urea and DAP tolerant Sinorhizobium meliloti and Pseudomonas aeruginosa as integrated approach for growth enhancement of Brassica juncea. Indian J Microbiol 50(4):425–431

    Article  CAS  PubMed  Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from Waste mica. Vegetos 27:181–187

    Google Scholar 

  • McArther DAJ, Knowles NR (1993) Influence of VAM and phosphorus nutrition on growth, development and mineral nutrition of potato. Plant Physiol 102:771–782

    Article  Google Scholar 

  • Meding SM, Zasoski RJ (2008) Hyphal-mediated transfer of nitrate, arsenic, cesium, rubidium, and strontium between arbuscular mycorrhizal forbs and grasses from California oak woodland. Soil Biol Biochem 40:126–134

    Article  CAS  Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Meena RS (2016) Potassium solubilizing microorganisms for sustainable agriculture. Springer

    Google Scholar 

  • Meena VS, Meena SK, Verma JP, Kumar A, Aeron A, Mishra PK, Bisht JK, Pattanayak A, Naveed M, Dotaniya ML (2017) Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: a review. Ecol Eng 107:8–32

    Article  Google Scholar 

  • Mehnaz S, Baig DN, Lazarovits G (2010) Genetic and phenotypic diversity of plant growth promoting rhizobacteria isolated from sugarcane plants growing in Pakistan. J Microbiol Biotechnol 20:1614–1623

    Article  CAS  PubMed  Google Scholar 

  • Minaxi J, Saxena S, Chandra S, Nain L (2013) Synergistic effect of phosphate solubilizing rhizobacteria and arbuscular mycorrhiza on growth and yield of wheat plants. J Soil Sci Plant Nut 13:511–525

    Google Scholar 

  • Montano FP, Villegas CA, Bellogia RA, Cerro PD, Espuny MR, Guerrero IJ (2014) Plant growth promotation in cereals and leguminous agricultural important plants from microorganisms capacities to crop production. Microbiol Res 169(5–6):325–336

    Article  Google Scholar 

  • Mosier AR, Syers JK, Freney JR (2004) Agriculture and the nitrogen cycle. Assessing the impacts of fertilizer use on food production and the environment, Scope-65. Island Press, London

    Google Scholar 

  • Orlandini V, Emiliani G, Fondi M, Maida E, Perrin E, Fani R, (2014) Network analysis of plasmidomes: The Azospirillum brasilense Sp245 Case. Hindawi Publishing Corporation, pp. 1–14

    Google Scholar 

  • Ortaş I, Rafique M (2017) The mechanisms of nutrient uptake by arbuscular mycorrhizae. In Mycorrhiza-Nutrient Uptake, Biocontrol, Ecorestoration (1–19). Springer, Cham

    Google Scholar 

  • Oyedele OA, Samuel T (2014) Antifungal activities of Bacillus subtilis isolated from some condiments and soil. Afr J Microbiol Res 8(18):1841–1849

    Article  Google Scholar 

  • Panday SC, Choudhary M, Singh S, Meena VS, Mahanta D, Yadav RP, Pattanayak A, Bisht JK (2018) Increasing farmer’s income and water use efficiency as affected by long-term fertilization under a rainfed and supplementary irrigation in a soybean wheat cropping system of Indian mid-Himalaya. Field Crop Res 219:214–221

    Article  Google Scholar 

  • Parihar M, Rakshit A (2016) Arbuscular Mycorrhiza: a versatile component for alleviation of salt stress. Nat Environ Pollut Technol 15(2):417

    CAS  Google Scholar 

  • Parihar M, Meena VS, Mishra PK. Rakshit M, Choudhary M, Yadav RP, Rana K, Bisht JK (2019). Arbuscular mycorrhiza: a viable strategy for soil nutrient loss reduction. Archives of Microbiology, pp 1–13. https://doi.org/10.1007/s00203-019-01653-9

  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750

    Article  CAS  PubMed  Google Scholar 

  • Prathap M, Ranjitha KBD (2015) A Critical review on plant growth promoting rhizobacteria. J Plant Pathol Microbiol 6(4):1–4

    Google Scholar 

  • Rahimizadeh M, Kashani A, Zare-Feizabadi A, Koocheki AR, Nassiri-Mahallati M (2010) Nitrogen use efficiency of wheat as affected by preceding crop, application rate of nitrogen and crop residues. Aust J Crop Sci 4:363–368

    CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran K, Srinivasan V, Hamza S, Anandaraj M (2007) “Phosphate solubilizing bacteria isolated from the rhizosphere soil and its growth promotion on black pepper (Piper nigrum L.) cuttings,” in Proceedings of the First International Meeting on Microbial Phosphate Solubilization, Vol. 102, eds E. Velázquez and C. Rodríguez-Barrueco (Dordrecht: Springer), 325–331

    Google Scholar 

  • Ramesh A, Sharma SK, Sharma MP, Yadav N, Joshi OP (2014) Inoculation of Zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India. Appl Soil Ecol 73:87–96

    Article  Google Scholar 

  • Renella G, Egamberdiyeva D, Landi L, Mench M, Nannipieri P (2006) Microbial activity and hydrolase activities during decomposition of root exudates released by an artificial root surface in Cd-contaminated soils. Soil Biol Biochem 38:702–708

    Article  CAS  Google Scholar 

  • Reynolds HL, Hartley AE, Vogelsang KM, Bever JD, Schultz PA (2005) Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture. New Phytol 167(3):869–880

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE, Lynch JP, Ryan PR (2011) Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349:121–156

    Article  CAS  Google Scholar 

  • Rockstorm J, Steffen W, Noone K, Persson A, Chapin AS III et al (2009) A safe operating space for humanity. Science 461:472–475

    Google Scholar 

  • Rokhbakhsh-Zamin F, Sachdev D, Kazemi-Pour N, Engineer A, Pardesi KR, Zinjarde S, Dhakephalkar PK, Chopade BA (2011) Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. J Microbiol Biotechnol 21:556–566

    PubMed  Google Scholar 

  • Sabry SRS, Saleh SA, Batchelor CA (1997) Endophytic establishment of Azorhizobium caulinodans in wheat. Proc Biol Sci 264:341–346

    Article  PubMed Central  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting Rhizobacteria: a critical review. Life Sci Med Res 21:1–30

    Google Scholar 

  • Sahoo RK, Ansari MW, Pradhan M (2014) Phenotypic and molecular characterization of native Azospirillum strains from rice fields to improve crop productivity. Protoplasma 251:943–953

    Article  CAS  PubMed  Google Scholar 

  • Santoro MV, Bogino PC, Nocelli N, Cappellari LR, Giordano WF, Banchio E (2016) Analysis of plant growth promoting effects of Fluorescent Pseudomonas strains isolated from Mentha piperita Rhizosphere and effects of their volatile organic compounds on essential oil composition. Front Microbiol 7(1085):1–17

    Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151

    Article  CAS  PubMed  Google Scholar 

  • Sharma SK, Johri BN, Ramesh A, Joshi OP, Prasad SVS (2011) Selection of plant growth promoting Pseudomonas spp. that enhanced productivity of soybean-wheat cropping system in central India. J Microbiol Biotechnol 21:1127–1142

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by Cadmium resistant bacteria. Chemophore 64:1036–1042

    Article  CAS  Google Scholar 

  • Shenoy VV, Kalagudi GM (2005) Enhancing plant phosphorus use efficiency for sustainable cropping. Biotechnol Adv 23:501–513

    Article  CAS  PubMed  Google Scholar 

  • Shintu PV, Jayaram KM (2015) Phosphate solubilising bacteria (Bacillus polymyxa)—and effective approach to mitigate drought in tomato (Lycopersicon esculentum). Trop Plant Res 2:17–22

    Google Scholar 

  • Shoji S, Delgado J, Mosier A, Miura Y (2001) Use of controlled release fertilizers and nitrification inhibitors to increase nitrogen use efficiency and to conserve air andwater quality. Comm Soil Sci Plant Anal 32(7–8):1051–1070

    Article  CAS  Google Scholar 

  • Singh PK (2012) Role of glomalin related soil protein produced by arbuscular mycorrhizal fungi: a review. Agric Sci Res J 2:119–125

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Sparks DL, Huang PM (1985) Physical chemistry of soil potassium. Potassium in agriculture. 201– 276

    Google Scholar 

  • Suhag M (2016) Potential of biofertilizers to replace chemical fertilizers. International Advanced Research Journal in Science, Engineering and Technology 3:163–167

    Google Scholar 

  • Syers JK, Johnson AE, Curtin D (2008) Efficiency of soil and fertilizer phosphorus use: Reconciling changing concepts of soil phosphorus behaviour with agronomic information. FAO: Food and Agriculture Organization of the United Nations, Rome. Fert Plant Nutr Bull 18

    Google Scholar 

  • Tak HI, Ahmad F, Babalola OO, Inam A (2012) Growth, photosynthesis and yield of chickpea as influenced by urban wastewater and different levels of phosphorus. Int J Plant Res 2:6–13

    Article  Google Scholar 

  • Tank N, Saraf M (2009) Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. J Basic Microbiol 49:195–204

    Article  CAS  PubMed  Google Scholar 

  • Teotia P, Kumar M, Prasad R, Kumar V, Tuteja N, Varma A (2017) Mobilization of Micronutrients by Mycorrhizal Fungi. In Mycorrhiza-Function, Diversity, State of the Art (9–26). Springer, Cham

    Google Scholar 

  • Thomas J, Ajay D, Kumar R, Mandal AK (2010) Influence of beneficial microorganisms during in vivo acclimatization of in vitro-derived tea (Camellia sinensis) plants. Plant Cell, Tissue Organ Cult 101:365–370

    Article  Google Scholar 

  • Tilman D, Cassman K, Matson P (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Christian B, Jason H, Belinda LB (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 108(50):20260–20264

    Article  PubMed  PubMed Central  Google Scholar 

  • Tilman D, Fargione J, Wolff B (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284

    Article  CAS  PubMed  Google Scholar 

  • Vansuyt G, Robin A, Briat JF, Curie C, Lemanceau P (2007) Iron acquisition from Fe pyoverdine by Arabidopsis thaliana. Mol Plant Microbes Interact 20:441–447

    Article  CAS  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Boyce AN (2016) Role of plant growth promoting Rhizobacteria in agricultural sustainability—A review. Molecules 21(573):1–17

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Wahid F, Sharif M, Steinkellner S, Khan MA, Marwat KB, Khan SA (2016) Inoculation of arbuscular mycorrhizal fungi and phosphate solubilizing bacteria in the presence of rock phosphate improves phosphorus uptake and growth of maize. Pak J Bot 48:739–747

    CAS  Google Scholar 

  • Wahyudi AT, Astuti RP, Widyawati A, Meryandini A, Nawangsih AA (2011) Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting Rhizobacteria. J Microbiol Antimicrob 3:34–40

    Google Scholar 

  • Wang X, Shen J, Liao H (2010) Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops? Plant Sci 179:302–306

    Article  CAS  Google Scholar 

  • Wang ZG, Bi YL, Jiang B, Zhakypbek Y, Peng SP, Liu WW, Liu H (2016) Arbuscular mycorrhizal fungi enhance soil carbon sequestration in the coalfields, northwest China. Scientific reports 6:336–343

    Google Scholar 

  • Wani PA, Khan MS (2010) Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem Toxicol 48:3262–3267

    Article  CAS  PubMed  Google Scholar 

  • Wezel A, Casagrande M, Celette F, Vian JF, Ferrer A, Peigné J (2014) Agroecological practices for sustainable agriculture. a review. Agron Sust Dev 34:1–20. https://doi.org/10.1007/s13593-013-0180-7

    Article  Google Scholar 

  • Willis A, Rodriguesb BF, Harrisa PJC (2013) The ecology of arbuscular mycorrhizal fungi. Crit Rev Plant Sci 32:1–20

    Article  Google Scholar 

  • Witt C, Fairhurst TH, Griffiths W (2005) Proceedings of 5th national ISP seminar, Johor, Bahru, Malaysia, 27–28 June 2005. Incorporated Society of Planters, pp 1–22

    Google Scholar 

  • Yadav MR, Kumar R, Parihar CM, Yadav RK, Jat SL, Ram H, Meena RK, Singh M, Verma AP, Kumar U, Ghosh A (2017) Strategies for improving nitrogen use efficiency: A review. Agric Rev 38(1):29–40

    Google Scholar 

  • Zhang HH, Tang M, Chen H, Zheng C, Niu Z (2010) Effect of inoculation with AM fungi on lead uptake, translocation and stress alleviation of Zea mays L. seedlings planting in soil with increasing lead concentrations. Eur J Soil Biol 46:306–311

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to the editors and anonymous reviewers for their productive comments, which help us to improve the manuscript.

Conflict of Interest: The author(s) have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahipal Choudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choudhary, M. et al. (2019). Does PGPR and Mycorrhizae Enhance Nutrient Use Efficiency and Efficacy in Relation to Crop Productivity?. In: Maheshwari, D., Dheeman, S. (eds) Field Crops: Sustainable Management by PGPR. Sustainable Development and Biodiversity, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-30926-8_3

Download citation

Publish with us

Policies and ethics