Skip to main content

Hamiltonicity Below Dirac’s Condition

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11789))

Included in the following conference series:

Abstract

Dirac’s theorem (1952) is a classical result of graph theory, stating that an n-vertex graph (\(n \ge 3\)) is Hamiltonian if every vertex has degree at least n/2. Both the value n/2 and the requirement for every vertex to have high degree are necessary for the theorem to hold.

In this work we give efficient algorithms for determining Hamiltonicity when either of the two conditions are relaxed. More precisely, we show that the Hamiltonian Cycle problem can be solved in time \(c^k \cdot n^{O(1)}\), for a fixed constant c, if at least \(n-k\) vertices have degree at least n/2, or if all vertices have degree at least \(n/2 - k\). The running time is, in both cases, asymptotically optimal, under the exponential-time hypothesis (ETH).

The results extend the range of tractability of the Hamiltonian Cycle problem, showing that it is fixed-parameter tractable when parameterized below a natural bound. In addition, for the first parameterization we show that a kernel with O(k) vertices can be found in polynomial time.

A full version of the paper is available on arXiv [26].

B.M.P. Jansen—Supported by NWO Gravitation grant “Networks”.

L. Kozma—Supported by ERC Consolidator Grant No 617951.

J. Nederlof—Supported by NWO Gravitation grant “Networks” and NWO Grant No 639.021.438.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abu-Khzam, F.N., Fellows, M.R., Langston, M.A., Suters, W.H.: Crown structures for vertex cover kernelization. Theory Comput. Syst. 41(3), 411–430 (2007). https://doi.org/10.1007/s00224-007-1328-0

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: Solving MAX-r-SAT above a tight lower bound. Algorithmica 61(3), 638–655 (2011). https://doi.org/10.1007/s00453-010-9428-7

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995). https://doi.org/10.1145/210332.210337

    Article  MathSciNet  MATH  Google Scholar 

  4. Bellman, R.: Dynamic programming treatment of the travelling salesman problem. J. Assoc. Comput. Mach. 9, 61–63 (1962)

    Article  MathSciNet  Google Scholar 

  5. Bezáková, I., Curticapean, R., Dell, H., Fomin, F.V.: Finding detours is fixed-parameter tractable. In: Proceedings of 44th ICALP. pp. 54:1–54:14 (2017). https://doi.org/10.4230/LIPIcs.ICALP.2017.54

  6. Björklund, A.: Determinant sums for undirected Hamiltonicity. SIAM J. Comput. 43(1), 280–299 (2014). https://doi.org/10.1137/110839229

    Article  MathSciNet  MATH  Google Scholar 

  7. Bondy, J.A., Chvátal, V.: A method in graph theory. Discrete Math. 15(2), 111–135 (1976)

    Article  MathSciNet  Google Scholar 

  8. Bondy, J.: Longest Paths and Cycles in Graphs of High Degree. Research report, Department of Combinatorics and Optimization, University of Waterloo (1980)

    Google Scholar 

  9. Büyükçolak, Y., Gözüpek, D., Özkan, S., Shalom, M.: On one extension of Dirac’s theorem on Hamiltonicity. Discrete Appl. Math. 252, 10–16 (2019). https://doi.org/10.1016/j.dam.2017.01.011

    Article  MathSciNet  MATH  Google Scholar 

  10. Chor, B., Fellows, M., Juedes, D.W.: Linear kernels in linear time, or how to save \(k\) colors in \(O\)\((n^2)\) steps. In: Proceedings of 30th WG, pp. 257–269 (2004). https://doi.org/10.1007/978-3-540-30559-0_22

    Chapter  Google Scholar 

  11. Crowston, R., Jones, M., Mnich, M.: Max-cut parameterized above the Edwards-Erdős bound. Algorithmica 72(3), 734–757 (2015). https://doi.org/10.1007/s00453-014-9870-z

    Article  MathSciNet  MATH  Google Scholar 

  12. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  13. Dahlhaus, E., Hajnal, P., Karpinski, M.: On the parallel complexity of Hamiltonian cycle and matching problem on dense graphs. J. Algorithms 15(3), 367–384 (1993). https://doi.org/10.1006/jagm.1993.1046

    Article  MathSciNet  MATH  Google Scholar 

  14. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  15. Dirac, G.A.: Some theorems on abstract graphs. Proc. London Math. Soc. s3 2(1), 69–81 (1952). https://doi.org/10.1112/plms/s3-2.1.69

    Article  MathSciNet  MATH  Google Scholar 

  16. Fellows, M.R.: Blow-Ups, Win/Win’s, and crown rules: some new directions in FPT. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 1–12. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39890-5_1

    Chapter  Google Scholar 

  17. Flum, J., Grohe, M.: Parameterized Complexity Theory. TTCSAES. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-29953-X

    Book  MATH  Google Scholar 

  18. Gould, R.J.: Recent advances on the Hamiltonian problem: survey III. Graphs Comb. 30(1), 1–46 (2014). https://doi.org/10.1007/s00373-013-1377-x

    Article  MathSciNet  MATH  Google Scholar 

  19. Guo, J., Hüffner, F., Niedermeier, R.: A structural view on parameterizing problems: distance from triviality. In: Proceedings of 1st IWPEC, pp. 162–173 (2004). https://doi.org/10.1007/978-3-540-28639-4_15

    Chapter  Google Scholar 

  20. Gutin, G.Z., Kim, E.J., Lampis, M., Mitsou, V.: Vertex cover problem parameterized above and below tight bounds. Theory Comput. Syst. 48(2), 402–410 (2011). https://doi.org/10.1007/s00224-010-9262-y

    Article  MathSciNet  MATH  Google Scholar 

  21. Gutin, G.Z., Kim, E.J., Szeider, S., Yeo, A.: A probabilistic approach to problems parameterized above or below tight bounds. J. Comput. Syst. Sci. 77(2), 422–429 (2011). https://doi.org/10.1016/j.jcss.2010.06.001

    Article  MathSciNet  MATH  Google Scholar 

  22. Gutin, G.Z., Patel, V.: Parameterized traveling salesman problem: beating the average. SIAM J. Discrete Math. 30(1), 220–238 (2016). https://doi.org/10.1137/140980946

    Article  MathSciNet  MATH  Google Scholar 

  23. Häggkvist, R.: On the structure of non-Hamiltonian graphs I. Comb. Probab. Comput. 1(1), 27–34 (1992). https://doi.org/10.1017/S0963548300000055

    Article  MathSciNet  MATH  Google Scholar 

  24. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. J. Soc. Indust. Appl. Math. 10, 196–210 (1962). https://doi.org/10.1137/0110015

    Article  MathSciNet  MATH  Google Scholar 

  25. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001). https://doi.org/10.1006/jcss.2001.1774

    Article  MathSciNet  MATH  Google Scholar 

  26. Jansen, B.M.P., Kozma, L., Nederlof, J.: Hamiltonicity below Dirac’s condition. CoRR abs/1902.01745 (2019). http://arxiv.org/abs/1902.01745

  27. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) IRSS, pp. 85–103. Springer, Heidelberg (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

    Chapter  Google Scholar 

  28. Karp, R.M.: Dynamic programming meets the principle of inclusion and exclusion. Oper. Res. Lett. 1(2), 49–51 (1982). https://doi.org/10.1016/0167-6377(82)90044-X

    Article  MathSciNet  MATH  Google Scholar 

  29. Knuth, D.: The art of computer programming: updates; pre-fascicle 8A, A draft of section 7.2.2.4: Hamiltonian paths and cycles. In: Addison-Wesley Series in Computer Science and Information Proceedings, vol. 4. Addison-Wesley (2018). https://www-cs-faculty.stanford.edu/~knuth/fasc8a.ps.gz

  30. Kühn, D., Osthus, D.: Hamilton cycles in graphs and hypergraphs: an extremal perspective. CoRR abs/1402.4268 (2014). http://arxiv.org/abs/1402.4268

  31. Lawler, E., Shmoys, D., Kan, A., Lenstra, J.: The Traveling Salesman Problem. Wiley, Hoboken (1985)

    MATH  Google Scholar 

  32. Li, H.: Generalizations of Dirac’s theorem in Hamiltonian graph theory-a survey. Discrete Math. 313(19), 2034–2053 (2013). https://doi.org/10.1016/j.disc.2012.11.025

    Article  MathSciNet  MATH  Google Scholar 

  33. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and MaxCut. J. Algorithms 31(2), 335–354 (1999). https://doi.org/10.1006/jagm.1998.0996

    Article  MathSciNet  MATH  Google Scholar 

  34. Mahajan, M., Raman, V., Sikdar, S.: Parameterizing above or below guaranteed values. J. Comput. Syst. Sci. 75(2), 137–153 (2009). https://doi.org/10.1016/j.jcss.2008.08.004

    Article  MathSciNet  MATH  Google Scholar 

  35. Nash-Williams, C.: Edge-disjoint Hamiltonian circuits in graphs with large valency. In: Mirksy, L. (ed.) Studies in Pure Mathematics, pp. 157–183. Academic Press, London (1971)

    Google Scholar 

  36. Ore, O.: Note on Hamilton circuits. Am. Math. Monthly 67(1), 55 (1960). http://www.jstor.org/stable/2308928

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

We thank Naomi Nishimura, Ian Goulden, and Wendy Rush for obtaining a copy of Bondy’s 1980 research report [8].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Kozma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jansen, B.M.P., Kozma, L., Nederlof, J. (2019). Hamiltonicity Below Dirac’s Condition. In: Sau, I., Thilikos, D. (eds) Graph-Theoretic Concepts in Computer Science. WG 2019. Lecture Notes in Computer Science(), vol 11789. Springer, Cham. https://doi.org/10.1007/978-3-030-30786-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30786-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30785-1

  • Online ISBN: 978-3-030-30786-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics