Skip to main content
Log in

Solving MAX-r-SAT Above a Tight Lower Bound

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We present an exact algorithm that decides, for every fixed r≥2 in time \(O(m)+2^{O(k^{2})}\) whether a given multiset of m clauses of size r admits a truth assignment that satisfies at least ((2r−1)m+k)/2r clauses. Thus Max-r-Sat is fixed-parameter tractable when parameterized by the number of satisfied clauses above the tight lower bound (1−2r)m. This solves an open problem of Mahajan et al. (J. Comput. Syst. Sci. 75(2):137–153, 2009).

Our algorithm is based on a polynomial-time data reduction procedure that reduces a problem instance to an equivalent algebraically represented problem with O(9r k 2) variables. This is done by representing the instance as an appropriate polynomial, and by applying a probabilistic argument combined with some simple tools from Harmonic analysis to show that if the polynomial cannot be reduced to one of size O(9r k 2), then there is a truth assignment satisfying the required number of clauses.

We introduce a new notion of bikernelization from a parameterized problem to another one and apply it to prove that the above-mentioned parameterized Max-r-Sat admits a polynomial-size kernel.

Combining another probabilistic argument with tools from graph matching theory and signed graphs, we show that if an instance of Max-2-Sat with m clauses has at least 3k variables after application of a certain polynomial time reduction rule to it, then there is a truth assignment that satisfies at least (3m+k)/4 clauses.

We also outline how the fixed-parameter tractability and polynomial-size kernel results on Max-r-Sat can be extended to more general families of Boolean Constraint Satisfaction Problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. Alon, N., Spencer, J.H.: The Probabilistic Method, 3rd edn. Wiley, New York (2008)

    Book  MATH  Google Scholar 

  2. Alon, N., Gutin, G., Krivelevich, M.: Algorithms with large domination ratio. J. Algorithms 50, 118–131 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified Boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berge, C.: Sur le couplage maximum d’un graphe. C. R. Acad. Sci. Paris 247, 258–259 (1958)

    MathSciNet  MATH  Google Scholar 

  5. Bodlaender, H.L.: Kernelization: new upper and lower bound techniques. In: Proceedings of IWPEC 2009. Lect. Notes Comput. Sci., vol. 5917, pp. 17–37. Springer, Berlin (2009)

    Google Scholar 

  6. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels (extended abstract). J. Comput. Syst. Sci. 75(8), 423–434 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint paths. In: Proceedings of ESA 2009. Lect. Notes Comput. Sci., vol. 5757, pp. 635–646. Springer, Berlin (2009)

    Google Scholar 

  8. Bonami, A.: Étude des coefficients de Fourier des fonctions de L p(G). Ann. Inst. Fourier 20(2), 335–402 (1970)

    MathSciNet  MATH  Google Scholar 

  9. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, New York (2008)

    Book  MATH  Google Scholar 

  10. Crowston, R., Gutin, G., Jones, M., Kim, E.J., Ruzsa, I.Z.: Systems of linear equations over \(\mathbb{F}_{2}\) and problems parameterized above average. In: Proceedings of SWAT 2010. Lect. Notes Comput. Sci., vol. 6139, pp. 164–175. Springer, Berlin (2010)

    Google Scholar 

  11. Downey, R.G., Fellows, M.R.: Parameterized computational feasibility. In: Clote, P., Remmel, J.B. (eds.): Proceedings of Feasible Mathematics II, pp. 219–244. Birkhäuser, Basel (1995)

    Google Scholar 

  12. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)

    Book  Google Scholar 

  13. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)

    Google Scholar 

  14. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph problems. Theory Comput. Sci. 1(3), 237–267 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. ACM SIGACT News 38, 31–45 (2007)

    Article  Google Scholar 

  16. Gutin, G., Rafiey, A., Szeider, S., Yeo, A.: The linear arrangement problem parameterized above guaranteed value. Theory Comput. Syst. 41, 521–538 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gutin, G., Szeider, S., Yeo, A.: Fixed-parameter complexity of minimum profile problems. Algorithmica 52(2), 133–152 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gutin, G., Kim, E.J., Mnich, M., Yeo, A.: Betweenness parameterized above tight lower bound. J. Comput. Syst. Sci. (2010). doi:10.1016/j.jcss.2010.05.001

  19. Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: A probabilistic approach to problems parameterized above tight lower bound. J. Comput. Syst. Sci. (2010). doi:10.1016/j.jcss.2010.06.001

  20. Håstad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Håstad, J., Venkatesh, S.: On the advantage over a random assignment. Random Struct. Algorithms 25(2), 117–149 (2004)

    Article  MATH  Google Scholar 

  22. Iwama, K.: CNF-satisfiability test by counting and polynomial average time. SIAM J. Comput. 18(2), 385–391 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Johnson, D.S.: Approximation algorithms for combinatorial problems. In: Proceedings of the 5th Annual ACM Symposium on Theory of Computing, pp. 38–49 (1973)

  24. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and MaxCut. J. Algorithms 31(2), 335–354 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mahajan, M., Raman, V., Sikdar, S.: Parameterizing above or below guaranteed values. J. Comput. Syst. Sci. 75(2), 137–153 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, London (2006)

    Book  MATH  Google Scholar 

  27. O’Donnell, R.: Some topics in analysis of boolean functions. In: Proceedings of STOC 2008, pp. 569–578 (2008)

  28. Shen, H., Zhang, H.: Improving exact algorithms for MAX-2-SAT. Ann. Math. Artif. Intell. 44(4), 419–436 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Villanger, Y., Heggernes, P., Paul, C., Telle, J.A.: Interval completion with few edges. SIAM J. Comput. 38(5), 2007–2020 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Gutin.

Additional information

A preliminary version of this paper has appeared in the proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA 2010). We extend the preliminary version by introducing the notion of a bikernelization and using it to prove the existence of a polynomial kernel for the Max-r-CSP tlb problem introduced in Sect. 6. We also obtain a quadratic kernel for Max-r-Sat tlb .

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alon, N., Gutin, G., Kim, E.J. et al. Solving MAX-r-SAT Above a Tight Lower Bound. Algorithmica 61, 638–655 (2011). https://doi.org/10.1007/s00453-010-9428-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-010-9428-7

Keywords

Navigation