Skip to main content

Nuclear Mechanics and Cancer Cell Migration

  • Chapter
  • First Online:
Cell Migrations: Causes and Functions

Abstract

As a cancer cell invades adjacent tissue, penetrates a basement membrane barrier, or squeezes into a blood capillary, its nucleus can be greatly constricted. Here, we examine: (1) the passive and active deformation of the nucleus during 3D migration; (2) the nuclear structures—namely, the lamina and chromatin—that govern nuclear deformability; (3) the effect of large nuclear deformation on DNA and nuclear factors; and (4) the downstream consequences of mechanically stressing the nucleus. We focus especially on recent studies showing that constricted migration causes nuclear envelope rupture and excess DNA damage, leading to cell cycle suppression, possibly cell death, and ultimately it seems to heritable genomic variation. We first review the latest understanding of nuclear dynamics during cell migration, and then explore the functional effects of nuclear deformation, especially in relation to genome integrity and potentially cancerous mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Borresen-Dale A-L et al (2013) Signatures of mutational processes in human cancer. Nature 500:415–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bancaud A, Huet S, Daigle N, Mozziconacci J, Beaudouin J, Ellenberg J (2009) Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin. EMBO J 28:3785–3798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnhart EL, Allen GM, Julicher F, Theriot JA (2010) Bipedal locomotion in crawling cells. Biophys J 98:933–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beadle C, Assanah MC, Monzo P, Vallee R, Rosenfeld SS, Canoll P (2008) The role of myosin II in glioma invasion of the brain. Mol Biol Cell 19(8):3357–3368. https://doi.org/10.1091/mbc.E08-03-0319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bekker-Jensen S, Lukas C, Melander F, Bartek J, Lukas J (2005) Dynamic assembly and sustained retention of 53BP1 at the sites of DNA damage are controlled by Mdc1/NFBD1. J Cell Biol 170:201–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett RR, Pfeifer CR, Irianto J, Xia Y, Discher DE, Liu AJ (2017) Elastic-fluid model for DNA damage and mutation from nuclear fluid segregation due to cell migration. Biophys J 112(11):2271–2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broers JLV, Peeters EAG, Kuijpers HJH, Endert J, Bouten CVC, Oomens CWJ, Baaijens FPT, Ramaekers FCS (2004) Decreased mechanical stiffness in LMNA −/− cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies. Hum Mol Genet 13:2567–2580

    Article  CAS  PubMed  Google Scholar 

  • Caille N, Thoumine O, Tardy Y, Meister J-J (2002) Contribution of the nucleus to the mechanical properties of endothelial cells. J Biomech 35:177–187

    Article  PubMed  Google Scholar 

  • Casasent AK, Schalck A, Gao R, Sei E, Long A, Pangburn W, Casasent T, Meric-Bernstam F, Edgerton ME, Navin NE (2018) Multiclonal invasion in breast tumors identified by topographic single cell sequencing. Cell 172:205–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Bahrami A, Pappo A, Easton J, Dalton J, Hedlund E, Ellison D, Shurtleff S, Wu G, Wei L et al (2014) Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep 7:104–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark RAF, Lanigan JM, DellaPelle P, Manseau E, Dvorak HF, Colvin RP (1982) Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization one-micron section studies of the migrating epidermis. J Invest Dermatol 79:264–269

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Bustamante C (2000) Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. PNAS 97:127–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294:1708–1713

    Article  CAS  PubMed  Google Scholar 

  • Dahl KN, Engler AJ, Pajerowski JD, Discher DE (2005) Power-law rheology of isolated nuclei with deformation mapping of nuclear substructures. Biophys J 89:2855–2864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahl KN, Ribeiro AJS, Lammerding J (2008) Nuclear shape, mechanics, and mechanotransduction. Circ Res 102:1307–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dasika GK, Lin S-CJ, Zhao S, Sung P, Tomkinson A, Lee EY-HP (1999) DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene 18:7883–7899

    Article  CAS  PubMed  Google Scholar 

  • Davidson PM, Denais C, Bakshi MC, Lammerding J (2015) Nuclear deformability constitutes a rate-limiting step during cell migration in 3-D environments. Cell Mol Bioeng 7:293–306

    Article  CAS  Google Scholar 

  • Denais CM, Gilbert RM, Isermann P, Mcgregor AL, te Lindert M, Weigelin B, Davidson PM, Friedl P, Wolf K, Lammerding J (2016) Nuclear envelope rupture and repair during cancer cell migration. Science 352:353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deviri D, Discher DE, Safran SA (2017) Rupture dynamics and chromatin herniation in deformed nuclei. Biophys J 113:1060–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Even-Ram S, Yamada KM (2005) Cell migration in 3D matrix. Curr Opin Cell Biol 17:524–532

    Article  CAS  PubMed  Google Scholar 

  • Friedl P, Zanker KS, Brocker E-B (1998) Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function. Microsc Res Tech 43:369–378

    Article  CAS  PubMed  Google Scholar 

  • Friedl P, Wolf K, Lammerding J (2011) Nuclear mechanics during cell migration. Curr Opin Cell Biol 23:55–64

    Article  CAS  PubMed  Google Scholar 

  • Garay T, Juhász É, Molnár E, Eisenbauer M, Czirók A, Dekan B, László V, Alireza Hoda M, Döme B, Tímár J et al (2013) Cell migration or cytokinesis and proliferation? – revisiting the “go or grow” hypothesis in cancer cells in vitro. Exp Cell Res 319:3094–3103

    Article  CAS  PubMed  Google Scholar 

  • Gasser UE, Hatten ME (1990) Central nervous system neurons migrate on astroglial fibers from heterotypic brain regions in vitro. PNAS 87:4543–4547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giese A, Loo MA, Tra N, Haskett D, Coons SW, Berens ME (1996) Dichotomy of astrocytoma migration and proliferation. Int J Cancer 67:275–282

    Article  CAS  PubMed  Google Scholar 

  • Gomes ER, Jani S, Gundersen GG (2005) Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 121:451–463

    Article  CAS  PubMed  Google Scholar 

  • Guilak F, Tedrow JR, Burgkart R (2000) Viscoelastic properties of the cell nucleus. Biochem Biophys Res Commun 269:781–786

    Article  CAS  PubMed  Google Scholar 

  • Harada T, Swift J, Irianto J, Shin JW, Spinler KR, Athirasala A, Diegmiller R, Dingal PCDP, Ivanovska IL, Discher DE (2014) Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J Cell Biol 204:669–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennekes H, Nigg EA (1994) The role of isoprenylation in membrane attachment of nuclear lamins. J Cell Sci 107:1019–1029

    CAS  PubMed  Google Scholar 

  • Herrmann H, Strelkov SV, Burkhard P, Aebi U (2009) Intermediate filaments: primary determinants of cell architecture and plasticity. J Clin Invest 119:1772–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hildebrandt J (1969) Institute of respiratory physiology, virginia mason research center and firland sanatorium, and the department of physiology and biophysics. Bull Math Biophys 31:651–667

    Article  CAS  PubMed  Google Scholar 

  • Holstege H, Horlings HM, Velds A, Langerød A, Børresen-Dale A-L, Van De Vijver MJ, Nederlof PM, Jonkers J (2010) BRCA1-mutated and basal-like breast cancers have similar aCGH profiles and a high incidence of protein truncating TP53 mutations. BMC Cancer 10:455–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irianto J, Pfeifer CR, Bennett RR, Xia Y, Ivanovska IL, Liu AJ, Greenberg RA, Discher DE (2016a) Nuclear constriction segregates mobile nuclear proteins away from chromatin. Mol Biol Cell 27:4011–4020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irianto J, Pfeifer CR, Ivanovska IL, Swift J, Discher DE (2016b) Nuclear lamins in cancer. Cell Mol Bioeng 9:258–267

    Article  CAS  PubMed  Google Scholar 

  • Irianto J, Xia Y, Pfeifer CR, Greenberg RA, Discher DE (2016c) As a nucleus enters a small pore, chromatin stretches and maintains integrity, even with DNA breaks. Biophys J 112:446–449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Irianto J, Xia Y, Pfeifer CR, Athirasala A, Ji J, Alvey C, Tewari M, Bennett RR, Harding SM, Liu AJ et al (2017) DNA damage follows repair factor depletion and portends genome variation in cancer cells after pore migration. Curr Biol 27:210–223

    Article  CAS  PubMed  Google Scholar 

  • Ivkovic S, Beadle C, Noticewala S, Massey SC, Swanson KR, Toro LN, Bresnick AR, Canoli P, Rosenfeld SS (2012) Direct inhibition of myosin II effectively blocks glioma invasion in the presence of multiple motogens. Mol Biol Cell 23:533–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khatau SB, Hale CM, Stewart-Hutchinson PJ, Patel MS, Stewart CL, Searson PC, Hodzic D, Wirtz D (2009) A perinuclear actin cap regulates nuclear shape. PNAS 106:19017–19022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khatau SB, Bloom RJ, Bajpai S, Razafsky D, Zang S, Giri A, Wu P-H, Marchand J, Celedon A, Hale CM et al (2012) The distinct roles of the nucleus and nucleus-cytoskeleton connections in three-dimensional cell migration. Sci Rep 2:488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurosaka S, Kashina A (2008) Cell biology of embryonic migration. Birth Defects Res C Embryo Today 84:102–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamalice L, Le Boeuf F, Huot J (2007) Endothelial cell migration during angiogenesis. Circ Res 100:782–794

    Article  CAS  PubMed  Google Scholar 

  • Lammermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Soldner R, Hirsch K, Keller M, Forster R, Critchley DR, Fassler R et al (2008) Rapid leukocyte migration by integrin- independent flowing and squeezing. Nature 453:51–55

    Article  PubMed  CAS  Google Scholar 

  • Lange JR, Fabry B (2013) Cell and tissue mechanics in cell migration. Exp Cell Res 319:2418–2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH, Roberts SA et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SFT, Csiszar K, Giaccia A, Weninger W et al (2010) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906

    Article  CAS  Google Scholar 

  • Levy-Lahad E, Friedman E (2007) Cancer risks among BRCA1 and BRCA2 mutation carriers. Br J Cancer 96:11–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtman MA (1970) Cellular deformability during maturation of the myeloblast. N Engl J Med 283:943–948

    Article  CAS  PubMed  Google Scholar 

  • Liotta LA, Steeg PS, Stetler-Stevenson WG (1991) Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64:327–336

    Article  CAS  PubMed  Google Scholar 

  • Lopez JI, Kang I, You W-K, McDonald DM, Weaver VM (2011) In situ force mapping of mammary gland transformation. Integr Biol 3:910–921

    Article  CAS  Google Scholar 

  • Luster AD, Alon R, von Andrian UH (2005) Immune cell migration in inflammation : present and future therapeutic targets. Nat Immunol 6:1182–1190

    Article  CAS  PubMed  Google Scholar 

  • Luxton GWG, Gomes ER, Folker ES, Vintinner E, Gundersen GG (2010) Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science 329:956–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marko JF (2008) Micromechanical studies of mitotic chromosomes. Chromosom Res 16:469–497

    Article  CAS  Google Scholar 

  • Martin SD, Coukos G, Holt RA, Nelson BH (2015) Targeting the undruggable: immunotherapy meets personalized oncology in the genomic era. Ann Oncol 26:2367–2374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martincorena I, Campbell PJ (2015) Somatic mutation in cancer and normal cells. Science 349:961–968

    Article  CAS  Google Scholar 

  • Martincorena I, Roshan A, Gerstung M, Ellis P, Van LP, Mclaren S, Wedge DC, Fullam A, Alexandrov LB, Tubio JM et al (2015) High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348:880–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins RP, Finan JD, Guilak F, Lee DA (2012) Mechanical regulation of nuclear structure and function. Annu Rev Biomed Eng 14:431–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushita H, Sato Y, Karasaki T, Nakagawa T, Kume H, Ogawa S, Homma Y, Kakimi K (2016) Neoantigen load, antigen presentation machinery, and immune signatures determine prognosis in clear cell renal cell carcinoma. Cancer Immunol Res 4:463–471

    Article  CAS  PubMed  Google Scholar 

  • Mazumder A, Shivashankar GV (2010) Emergence of a prestressed eukaryotic nucleus during cellular differentiation and development. J R Soc Interface 7:S321–S330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meidav T (1964) Viscoelastic properties of the standard linear solid. Geophys Prospect 12:1365–2478

    Article  Google Scholar 

  • Nagayama K, Yahiro Y, Matsumoto T (2011) Stress fibers stabilize the position of intranuclear DNA through mechanical connection with the nucleus in vascular smooth muscle cells. FEBS Lett 585:3992–3997

    Article  CAS  PubMed  Google Scholar 

  • Neelam S, Chancellor TJ, Li Y, Nickerson JA, Roux KJ, Dickinson RB, Lele TP (2015) Direct force probe reveals the mechanics of nuclear homeostasis in the mammalian cell. PNAS 112:5720–5725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pajerowski JD, Dahl KN, Zhong FL, Sammak PJ, Discher DE (2007) Physical plasticity of the nucleus in stem cell differentiation. PNAS 104:15619–15624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parri M, Chiarugi P (2010) Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal 8:1–14

    Article  CAS  Google Scholar 

  • Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11:633–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrie RJ, Koo H, Yamada KM (2014) Generation of compartmentalized pressure by a nuclear piston governs cell motility in 3D matrix. Science 345:1062–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeifer CR, Alvey CM, Irianto J, Discher DE (2017) Genome variation across cancers scales with tissue stiffness – An invasion-mutation mechanism and implications for immune cell infiltration. Curr Opin Syst Biol 2:102–113

    Google Scholar 

  • Pfeifer CR, Xia Y, Zhu K, Liu D, Irianto J, García VMM, Millán LMS, Niese B, Harding S, Deviri D et al (2018) Constricted migration increases DNA damage and independently represses cell cycle. Mol Biol Cell. https://doi.org/10.1091/mbc.E18-02-0079

  • Pryde F, Khalili S, Robertson K, Selfridge J, Ritchie A-M, Melton DW, Jullien D, Adachi Y (2005) 53BP1 exchanges slowly at the sites of DNA damage and appears to require RNA for its association with chromatin. J Cell Sci 118:2043–2055

    Article  CAS  PubMed  Google Scholar 

  • Raab M, Swift J, Dingal PDP, Shah P, Shin J-W, Discher DE (2012) Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain. J Cell Biol 199:669–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raab M, Gentili M, de Belly H, Thiam HR, Vargas P, Jimenez AJ, Lautenschlaeger F, Voituriez R, Lennon-Dumenil AM, Manel N et al (2016) ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352:359–362

    Article  CAS  PubMed  Google Scholar 

  • Roth S, Neuman-silberberg FS, Barcelo G, Schlipbach T (1995) Cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in drosophila. Cell 81:967–978

    Article  CAS  PubMed  Google Scholar 

  • Schreiner SM, Koo PK, Zhao Y, Mochrie SGJ, King MC (2015) The tethering of chromatin to the nuclear envelope supports nuclear mechanics. Nat Commun 6:7159

    Article  PubMed  Google Scholar 

  • Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348:69–74

    Article  CAS  PubMed  Google Scholar 

  • Shain AH, Yeh I, Kovalyshyn I, Sriharan A, Talevich E, Gagnon A, Dummer R, North J, Pincus L, Ruben B et al (2015) The genetic evolution of melanoma from precursor lesions. N Engl J Med 373:1926–1936

    Article  PubMed  CAS  Google Scholar 

  • Shimi T, Pfleghaar K, Kojima S, Pack C-G, Solovei I, Goldman AE, Adam SA, Shumaker DK, Kinjo M, Cremer T et al (2008) The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev 22:3409–3421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin J-W, Spinler KR, Swift J, Chasis JA, Mohandas N, Discher DE (2013) Lamins regulate cell trafficking and lineage maturation of adult human hematopoietic cells. PNAS 110:18892–18897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens AD, Banigan EJ, Adam SA, Goldman RD, Dunn AR (2017) Chromatin and lamin A determine two different mechanical response regimes of the cell nucleus. Mol Biol Cell. https://doi.org/10.1091/mbc.E16-09-0653

  • Stewart-Hutchinson PJ, Hale CM, Wirtz D, Hodzic D (2008) Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness. Exp Cell Res 314:1892–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan T, Escalante-Alcalde D, Bhatt H, Anver M, Bhat N, Nagashima K, Stewart CL, Burke B (1999) Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol 147:913–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PCDP, Pinter J, Pajerowski JD, Spinler KR, Shin J, Tewari M et al (2013) Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341:1240104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tamiello C, Kamps MA, van den Wijngaard A, Verstraeten VL, Baaijens FP, Broers JL, Bouten CC (2013) Soft substrates normalize nuclear morphology and prevent nuclear rupture in fibroblasts from a laminopathy patient with compound heterozygous LMNA mutations. Nucleus 4:61–73

    Article  PubMed  PubMed Central  Google Scholar 

  • Tapley EC, Starr DA (2013) Connecting the nucleus to the cytoskeleton by SUN – KASH bridges across the nuclear envelope. Curr Opin Cell Biol 25:57–62

    Article  CAS  PubMed  Google Scholar 

  • Tsai L-H, Gleeson JG (2005) Nucleokinesis in neuronal migration minireview. Neuron 46:383–388

    Article  CAS  PubMed  Google Scholar 

  • Turgay Y, Eibauer M, Goldman AE, Shimi T, Khayat M, Ben-Harush K, Dubrovsky-Gaupp A, Sapra KT, Goldman RD, Medalia O (2017) The molecular architecture of lamins in somatic cells. Nature 543:261–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ungricht R, Kutay U (2017) Mechanisms and functions of nuclear envelope remodelling. Nat Rev Mol Cell Biol 18:229–245

    Article  CAS  PubMed  Google Scholar 

  • Wolf K, Wu YI, Liu Y, Geiger J, Tam E, Overall C, Stack MS, Friedl P (2007) Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 9:893–904

    Article  CAS  PubMed  Google Scholar 

  • Wolf K, te Lindert M, Krause M, Alexander S, te Riet J, Willis AL, Hoffman RM, Figdor CG, Weiss SJ, Friedl P (2013) Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J Cell Biol 201:1069–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Kent IA, Shekhar N, Chancellor TJ, Mendonca A, Dickinson RB, Lele TP (2014) Actomyosin pulls to advance the nucleus in a migrating tissue cell. Biophys J 106:7–15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xia Y, Ivanovska IL, Zhu K, Smith L, Irianto J, Pfeifer CR, Alvey CM, Ji J, Liu D, Cho S, Bennett RR, Liu AJ, Greenberg RA, Discher DE (2018) Nuclear rupture at sites of high curvature compromises retention of DNA repair factors. J Cell Biol 217:3796–3808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Leone LM, Kaufman LJ (2009) Elastic moduli of collagen gels can be predicted from two-dimensional confocal microscopy. Biophys J 97:2051–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Xu R, Zhu B, Yang X, Ding X, Duan S, Xu T, Zhuang Y, Han M (2007) Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation. Development 134:901–908

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis E. Discher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pfeifer, C.R., Irianto, J., Discher, D.E. (2019). Nuclear Mechanics and Cancer Cell Migration. In: La Porta, C., Zapperi, S. (eds) Cell Migrations: Causes and Functions. Advances in Experimental Medicine and Biology, vol 1146. Springer, Cham. https://doi.org/10.1007/978-3-030-17593-1_8

Download citation

Publish with us

Policies and ethics