Skip to main content

Fundamentals of Fermentation Media

  • Chapter
  • First Online:
Essentials in Fermentation Technology

Part of the book series: Learning Materials in Biosciences ((LMB))

Abstract

A well-designed growth medium is one of the key elements of a successful microbial fermentation. In this chapter, the roles and sources of individual components of submerged and solid-state fermentation media are described. These components include C and N sources, water, minerals, growth factors, precursors, and antifoams. The use of low-value by-products and waste streams as fermentation substrates is also discussed. The design and optimization of fermentation media and considerations for scale-up are critical to the ultimate success of industrial fermentation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aiba S, Humphrey AE, Millis NF, editors. Scale-up. Biochemical engineering. 2nd ed. New York: Academic Press; 1973. p. 195–217.

    Google Scholar 

  2. Aidoo KE, Nout MJR, Sarkar PK. Occurrence and function of yeasts in Asian indigenous fermented foods. FEMS Yeast Res. 2006;6(1):30–9. https://doi.org/10.1111/j.1567-1364.2005.00015.x.

    Article  CAS  PubMed  Google Scholar 

  3. Al-Ajlani M, Sheikh M, Ahmad Z, et al. Production of surfactin from Bacillus subtilis MZ-7 grown on pharmamedia commercial medium. Microb Cell Fact. 2007;6:17. https://doi.org/10.1186/1475-2859-6-17.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Allikian K, Rasiah I, Zhang S. Effects of common defoaming agents on the growth of the endotoxin-free ClearColi® Escherichia coli host. In: Abstracts of the Society for Industrial Microbiology and Biotechnology Annual Meeting, New Orleans, LA, USA, 24-28 July 2016; 2016.

    Google Scholar 

  5. Ano T, Jin G, Mizumoto S, et al. Solid state fermentation of lipopeptide antibiotic iturin A by using a novel solid state fermentation reactor system. J Environ Sci. 2009;21:S162–5. https://doi.org/10.1016/s1001-0742(09)60064-4.

    Article  Google Scholar 

  6. Aoki MA, Pastore GM, Park YK. Microbial transformation of sucrose and glucose to erythritol. Biotechnol Lett. 1993;15(4):383–8. https://doi.org/10.1007/BF00128281.

    Article  CAS  Google Scholar 

  7. Babu PD, Bhakyaraj R, Vidhyalakshmi R, et al. A low cost nutritious food “tempeh” – a review. World J Dairy Food Sci. 2009;4(1):22–7.

    Google Scholar 

  8. Babu CR, Ketanapalli H, Beebi SK, et al. Wheat bran-composition and nutritional quality: a review. Adv Biotech & Micro. 2018;9(1):MS.ID.555754. https://doi.org/10.19080/AIBM.2018.09.555754.

    Article  Google Scholar 

  9. Boenigk R, Bowien S, Gottschalk G. Fermentation of glycerol to 1, 3-propanediol in continuous cultures of Citrobacter freundii. Appl Microbiol Biotechnol. 1993;38(4):453–7. https://doi.org/10.1007/BF00242936.

    Article  CAS  Google Scholar 

  10. Bohn L, Meyer AS, Rasmussen SK. Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J Zhejiang Univ Sci B. 2008;9(3):165–91. https://doi.org/10.1631/jzus.B0710640.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Boni L, Cangini M, Grifoni A, et al. Polysaccharide production by microalgae from the Adriatic Sea. In: Faranda FM, Guglielmo L, Sperle G, editors. Mediterranean ecosystems: structures and processes. Milan: Springer-Verlag; 2001. p. 61–4. https://doi.org/10.1007/978-88-470-2105-1_7.

    Chapter  Google Scholar 

  12. Boon L, Hoeks F, van der Lans R, et al. Comparing a range of impellers for “stirring as foam disruption”. Biochem Eng J. 2002;10(3):183–95. https://doi.org/10.1016/s1369-703x(01)00180-2.

    Article  CAS  Google Scholar 

  13. Botella C, Diaz A, de Ory I, et al. Xylanase and pectinase production by Aspergillus awamori on grape pomace in solid state fermentation. Process Biochem. 2007;42(1):98–101. https://doi.org/10.1016/j.procbio.2006.06.025.

    Article  CAS  Google Scholar 

  14. Bultel-Ponce V, Debitus C, Berge JP, et al. Metabolites from the sponge-associated bacterium Micrococcus luteus. J Mar Biotechnol. 1998;6:233–6.

    CAS  PubMed  Google Scholar 

  15. Chang PK, Matsushima K, Takahashi T, et al. Understanding nonaflatoxigenicity of Aspergillus sojae: a windfall of aflatoxin biosynthesis research. Appl Microbiol Biotechnol. 2007;76(5):977–84. https://doi.org/10.1007/s00253-007-1116-4.

    Article  CAS  PubMed  Google Scholar 

  16. Chen YS, Yanagida F, Hsu JS. Isolation and characterization of lactic acid bacteria from Dochi (fermented black beans), a traditional fermented food in Taiwan. Lett Appl Microbiol. 2006;43(2):229–35. https://doi.org/10.1111/j.1472-765x.2006.01922.x.

    Article  CAS  PubMed  Google Scholar 

  17. Chen HZ, Liu ZH, Dai SH. A novel solid state fermentation coupled with gas stripping enhancing the sweet sorghum stalk conversion performance for bioethanol. Biotechnol Biofuels. 2014;7(1):53. https://doi.org/10.1186/1754-6834-7-53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheng YQ, Hu Q, Li LT, et al. Production of Sufu, a traditional Chinese fermented soybean food, by fermentation with Mucor flavus at low temperature. Food Sci Technol Res. 2009;15(4):347–52. https://doi.org/10.3136/fstr.15.347.

    Article  CAS  Google Scholar 

  19. Chiou RYY, Cheng SL. Isoflavone transformation during soybean Koji preparation and subsequent Miso fermentation supplemented with ethanol and NaCl. J Agric Food Chem. 2001;49(8):3656–60. https://doi.org/10.1021/jf001524l.

    Article  CAS  PubMed  Google Scholar 

  20. Chiou RY, Ferng S, Beuchat L. Fermentation of low-salt Miso as affected by supplementation with ethanol. Int J Food Microbiol. 1999;48(1):11–20. https://doi.org/10.1016/s0168-1605(99)00033-1.

    Article  CAS  PubMed  Google Scholar 

  21. Cho YH, Shin IS, Hong SM, et al. Production of functional high-protein beverage fermented with lactic acid bacteria isolated from Korean traditional fermented food. Korean J Food Sci Anim Resour. 2015;35:189–96. https://doi.org/10.5851/kosfa.2015.35.2.189.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chua JY, Lu Y, Liu SQ. Biotransformation of soy whey into soy alcoholic beverage by four commercial strains of Saccharomyces cerevisiae. Int J Food Microbiol. 2017;262:14–22. https://doi.org/10.1016/j.ijfoodmicro.2017.09.007.

    Article  CAS  PubMed  Google Scholar 

  23. Clarkson J, Cui Z, Darton R. Protein denaturation in foam. J Colloid Interface Sci. 1999;215(2):323–32. https://doi.org/10.1006/jcis.1999.6255.

    Article  CAS  PubMed  Google Scholar 

  24. Cocaign-Bousquet M, Garrigues C, Novak L, et al. Rational development of a simple synthetic medium for the sustained growth of Lactococcus lactis. J Appl Bacteriol. 1995;79(1):108–16. https://doi.org/10.1111/j.1365-2672.1995.tb03131.x.

    Article  CAS  Google Scholar 

  25. Coutinho EM. Gossypol: a contraceptive for men. Contraception. 2002;65(4):259–63. https://doi.org/10.1016/s0010-7824(02)00294-9.

    Article  CAS  PubMed  Google Scholar 

  26. Daniel HJ, Otto RT, Reuss M, et al. Sophorolipid production with high yields on whey concentrate and rapeseed oil without consumption of lactose. Biotechnol Lett. 1998a;20(8):805–7. https://doi.org/10.1023/B:BILE.0000015927.29348.1a.

    Article  CAS  Google Scholar 

  27. Daniel HJ, Reuss M, Syldatk C. Production of sophorolipids in high concentration from deproteinized whey and rapeseed oil in a two stage fed batch process using Candida bombicola ATCC 22214 and Cryptococcus curvatus ATCC 20509. Biotechnol Lett. 1998b;20(12):1153–6. https://doi.org/10.1023/A:1005332605003.

    Article  CAS  Google Scholar 

  28. Darvishi F, Destain J, Nahvi I, et al. High-level production of extracellular lipase by Yarrowia lipolytica mutants from methyl oleate. New Biotechnol. 2011;28(6):756–60. https://doi.org/10.1016/j.nbt.2011.02.002.

    Article  CAS  Google Scholar 

  29. Dean JA, editor. Lange’s handbook of chemistry. 12th ed. McGraw-Hill: New York; 1979.

    Google Scholar 

  30. Denkov ND, Marinova KG, Tcholakova SS. Mechanistic understanding of the modes of action of foam control agents. Adv Colloid Interface Sci. 2014;206:57–67. https://doi.org/10.1016/j.cis.2013.08.004.

    Article  CAS  PubMed  Google Scholar 

  31. Deshpande M, Daniels L. Evaluation of sophorolipid biosurfactant production by Candida bombicola using animal fat. Bioresour Technol. 1995;54(2):143–50. https://doi.org/10.1016/0960-8524(95)00116-6.

    Article  CAS  Google Scholar 

  32. Du R, Yan J, Feng Q, et al. A novel wild-type Saccharomyces cerevisiae strain TSH1 in scaling-up of solid-state fermentation of ethanol from sweet sorghum stalks. PLOS One. 2014;9(4):e94480. https://doi.org/10.1371/journal.pone.0094480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Elander R. Industrial production of β-lactam antibiotics. Appl Microbiol Biotechnol. 2003;61(5-6):385–92. https://doi.org/10.1007/s00253-003-1274-y.

    Article  CAS  PubMed  Google Scholar 

  34. Erdogrul O, Azirak S. Review of the studies on the red yeast rice (Monascus purpureus). Turk Electr J Biotech. 2004;2:37–49.

    Google Scholar 

  35. Ergun SO, Urek RO. Production of ligninolytic enzymes by solid state fermentation using Pleurotus ostreatus. Ann Agrar Sci. 2017;15(2):273–7. https://doi.org/10.1016/j.aasci.2017.04.003.

    Article  Google Scholar 

  36. Fox SL, Bala GA. Production of surfactant from Bacillus subtilis ATCC 21332 using potato substrates. Bioresour Technol. 2000;75(3):235–40. https://doi.org/10.1016/s0960-8524(00)00059-6.

    Article  CAS  Google Scholar 

  37. Gadd GM. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology. 2010;156(3):609–43. https://doi.org/10.1099/mic.0.037143-0.

    Article  CAS  PubMed  Google Scholar 

  38. Gadelha ICN, Fonseca NBS, Oloris SCS, et al. Gossypol toxicity from cottonseed products. Sci World J. 2014;2014:231635. https://doi.org/10.1155/2014/231635.

    Article  CAS  Google Scholar 

  39. Ghaly A, Kamal M. Submerged yeast fermentation of acid cheese whey for protein production and pollution potential reduction. Water Res. 2004;38(3):631–44. https://doi.org/10.1016/j.watres.2003.10.019.

    Article  CAS  PubMed  Google Scholar 

  40. Ghorbani F, Younesi H, Sari AE, et al. Cane molasses fermentation for continuous ethanol production in an immobilized cells reactor by Saccharomyces cerevisiae. Renew Energy. 2011;36(2):503–9. https://doi.org/10.1016/j.renene.2010.07.016.

    Article  CAS  Google Scholar 

  41. Ghosalkar A, Sahai V, Srivastava A. Optimization of chemically defined medium for recombinant Pichia pastoris for biomass production. Bioresour Technol. 2008;99(16):7906–10. https://doi.org/10.1016/j.biortech.2008.01.059.

    Article  CAS  PubMed  Google Scholar 

  42. Ghosh JS. Solid state fermentation and food processing: a short review. J Nutr Food Sci. 2016;06(01):1000453. https://doi.org/10.4172/2155-9600.1000453.

    Article  CAS  Google Scholar 

  43. Goldammer T. The Brewer’s handbook. Clifton: KVP Publishers; 1999.

    Google Scholar 

  44. Gouda MK, Swellam AE, Omar SH. Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiol Res. 2001;156(3):201–7. https://doi.org/10.1078/0944-5013-00104.

    Article  CAS  PubMed  Google Scholar 

  45. Grewal H, Kalra K. Fungal production of citric acid. Biotechnol Adv. 1995;13(2):209–34. https://doi.org/10.1016/0734-9750(95)00002-8.

    Article  CAS  PubMed  Google Scholar 

  46. Gunasekaran S, Poorniammal R. Optimization of fermentation conditions for red pigment production from Penicillium sp. under submerged cultivation. Afr J Biotechnol. 2008;7(12):1894–8. https://doi.org/10.4314/ajb.v7i12.58846.

    Article  CAS  Google Scholar 

  47. Heldal M, Norland S, Fagerbakke KM, et al. The elemental composition of bacteria: a signature of growth conditions? Mar Pollut Bull. 1996;33(1-6):3–9. https://doi.org/10.1016/s0025-326x(97)00007-6.

    Article  CAS  Google Scholar 

  48. Herbert D. Stoichiometric aspects of microbial growth. In: Dean CR, Ellwood DC, Evans CGT, et al., editors. Continuous culture 6: applications and new fields. Chichester: Ellis Horwood; 1976. p. 1–30.

    Google Scholar 

  49. Hernandez-Orte P, Ibarz M, Cacho J, et al. Addition of amino acids to grape juice of the Merlot variety: effect on amino acid uptake and aroma generation during alcoholic fermentation. Food Chem. 2006;98(2):300–10. https://doi.org/10.1016/j.foodchem.2005.05.073.

    Article  CAS  Google Scholar 

  50. Hesham AEL, Mohamed NH, Ismail MA, et al. Degradation of natural rubber latex by new Streptomyces labedae strain ASU-03 isolated from Egyptian soil. Microbiology. 2015;84(3):351–8. https://doi.org/10.1134/S0026261715030078.

    Article  CAS  Google Scholar 

  51. Hoondal G, Tiwari R, Tewari R, et al. Microbial alkaline pectinases and their industrial applications: a review. Appl Microbiol Biotechnol. 2002;59(4-5):409–18. https://doi.org/10.1007/s00253-002-1061-1.

    Article  CAS  PubMed  Google Scholar 

  52. Hull SR, Yang BY, Venzke D, et al. Composition of corn steep water during steeping. J Agric Food Chem. 1996;44(7):1857–63. https://doi.org/10.1021/jf950353v.

    Article  CAS  Google Scholar 

  53. Japan Sake and Shochu Makers Association. A comprehensive guide to Japanese sake. Tokyo: Japan Sake and Shochu Makers Association; 2011.

    Google Scholar 

  54. Jeong H, Park S, Pak V, et al. Fermented soybean products and their bioactive compounds. In: El-Shemy H, editor. Soybean and health. InTechOpen; 2011. https://doi.org/10.5772/10670.

  55. Jiang H, Chen Y, Jiang P, et al. Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem Eng J. 2010;49(3):277–88. https://doi.org/10.1016/j.bej.2010.01.003.

    Article  CAS  Google Scholar 

  56. Jin G, Zhu Y, Xu Y. Mystery behind Chinese liquor fermentation. Trends Food Sci Technol. 2017;63:18–28. https://doi.org/10.1016/j.tifs.2017.02.016.

    Article  CAS  Google Scholar 

  57. Kale SK, Deshmukh AG, Dudhare MS, et al. Microbial degradation of plastic: a review. J Biochem Tech. 2015;6(2):952–61.

    CAS  Google Scholar 

  58. Kamath PV, Dwarakanath BS, Chaudhary A, et al. Optimization of culture conditions for maximal lovastatin production by Aspergillus terreus (KM017963) under solid state fermentation. HAYATI J Biosci. 2015;22(4):174–80. https://doi.org/10.1016/j.hjb.2015.11.001.

    Article  Google Scholar 

  59. Kampen WH. Nutritional requirements in fermentation processes. In: Vogel HC, Todaro CM, editors. Fermentation and biochemical engineering handbook: principles, process design and equipment. 3rd ed. Westwood: Elsevier; 2014. p. 37–57.

    Chapter  Google Scholar 

  60. Koser S, Anwar Z, Iqbal Z, et al. Utilization of Aspergillus oryzae to produce pectin lyase from various agro-industrial residues. J Radiat Res Appl Sci. 2014;7(3):327–32. https://doi.org/10.1016/j.jrras.2014.05.001.

    Article  Google Scholar 

  61. Kosseva MR. Recovery of commodities from food wastes using solid-state fermentation. In: Kosseva M, Webb C, editors. Food industry wastes. 1st ed: Elsevier; 2013. p. 77–102. https://doi.org/10.1016/B978-0-12-391921-2.00005-6.

  62. Kovacs E, Wirth R, Maroti G, et al. Biogas production from protein-rich biomass: fed-batch anaerobic fermentation of casein and of pig blood and associated changes in microbial community comosition. PLOS One. 2013;8(10):e77265. https://doi.org/10.1371/journal.pone.0077265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kroner K, Hummel W, Volkel J, et al. Effects of antifoams on cross-flow filtration of microbial suspensions. In: Drioli E, Nakagaki M, editors. Membranes and membrane processes. New York: Springer; 1986. p. 223–32.

    Chapter  Google Scholar 

  64. Kumar Y, Dhingra MD. Inventive utilization of soybean whey as beverage. Int J Multidiscip Approach Stud. 2014;1(2):100–7.

    Google Scholar 

  65. Lakshmi BS, Kangueane P, Abraham B, et al. Effect of vegetable oils in the secretion of lipase from Candida rugosa (DSM 2031). Lett Appl Microbiol. 1999;29(1):66–70. https://doi.org/10.1046/j.1365-2672.1999.00578.x.

    Article  CAS  Google Scholar 

  66. Lee SY. Bacterial polyhydroxyalkanoates. Biotechnol Bioeng. 1996a;49(1):1–14. https://doi.org/10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.0.CO;2-P.

    Article  CAS  PubMed  Google Scholar 

  67. Lee SY. High cell-density culture of Escherichia coli. Trends Biotechnol. 1996b;14(3):98–105. https://doi.org/10.1016/0167-7799(96)80930-9.

    Article  CAS  PubMed  Google Scholar 

  68. Lee PC, Lee WG, Lee SY, et al. Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnol Bioeng. 2001;72:41–8. https://doi.org/10.1002/1097-0290(20010105)72:1<41::AID-BIT6>3.0.CO;2-N.

    Article  CAS  PubMed  Google Scholar 

  69. Lee YH, Tominaga M, Hayashi R, et al. Aspergillus oryzae strains with a large deletion of the aflatoxin biosynthetic homologous gene cluster differentiated by chromosomal breakage. Appl Microbiol Biotechnol. 2006;72(2):339–45. https://doi.org/10.1007/s00253-005-0282-5.

    Article  CAS  PubMed  Google Scholar 

  70. Levin L, Herrmann C, Papinutti VL. Optimization of lignocellulolytic enzyme production by the white-rot fungus Trametes trogii in solid-state fermentation using response surface methodology. Biochem Eng J. 2008;39(1):207–14. https://doi.org/10.1016/j.bej.2007.09.004.

    Article  CAS  Google Scholar 

  71. Li S, Zhu D, Li K, et al. Soybean curd residue: Composition, utilization, and related limiting factors. ISRN Ind Eng. 2013;2013:1–8. https://doi.org/10.1155/2013/423590.

    Article  Google Scholar 

  72. Liggett RW, Koffler H. Corn steep liquor in microbiology. Bacteriol Rev. 1948;12:297–311.

    Article  CAS  Google Scholar 

  73. Lilly VG. The chemical environment for growth. 1. media, macro and micronutrients. In: Ainsworth GC, Sussman AS, editors. The fungi, vol. 1. New York: Academic Press; 1965. p. 465–78.

    Google Scholar 

  74. Luria SE. The bacterial protoplasm: composition and organisation. In: Gunsalus IC, Stanier RY, editors. The bacteria, vol. 1. New York: Academic Press; 1960. p. 1–34.

    Google Scholar 

  75. Magonet E, Hayen P, Delforge D, et al. Importance of the structural zinc atom for the stability of yeast alcohol dehydrogenase. Biochem J. 1992;287(2):361–5. https://doi.org/10.1042/bj2870361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Majumdar M, Majumdar S. Effects of minerals on neomycin production by Streptomyces fradiae. Appl Microbiol. 1965;13(2):190–3.

    Article  CAS  Google Scholar 

  77. Makkar RS, Cameotra SS. Utilization of molasses for biosurfactant production by two Bacillus strains at thermophilic conditions. J Am Oil Chem Soc. 1997;74(7):887–9. https://doi.org/10.1007/s11746-997-0233-7.

    Article  CAS  Google Scholar 

  78. Manan MA, Webb C. Modern microbial solid state fermentation technology for future biorefineries for the production of added-value products. Biofuel Res J. 2017;4(4):730–40. https://doi.org/10.18331/brj2017.4.4.5.

    Article  CAS  Google Scholar 

  79. Martins DAB, do Prado HFA, Leite RSR, et al. Agroindustrial wastes as substrates for microbial enzymes production and source of sugar for bioethanol production. In: Kumar S, editor. Integrated waste management, vol. II. Rijeka: InTechOpen; 2011. p. 319–60.

    Google Scholar 

  80. Matthews CB, Kuo A, Love KR, et al. Development of a general defined medium for Pichia pastoris. Biotechnol Bioeng. 2017;115(1):103–13. https://doi.org/10.1002/bit.26440.

    Article  CAS  PubMed  Google Scholar 

  81. Mazumdar-Shaw K, Suryanarayan S. Commercialization of a novel fermentation concept. Adv Biochem Eng/Biotechnol. 2003;85:29–42. https://doi.org/10.1007/3-540-36466-8_2.

    Article  CAS  Google Scholar 

  82. Mercade M, Monleon L, de Andres C, et al. Screening and selection of surfactant-producing bacteria from waste lubricating oil. J Appl Bacteriol. 1996;81(2):161–6. https://doi.org/10.1111/j.1365-2672.1996.tb04494.x.

    Article  CAS  Google Scholar 

  83. Minier M, Fessier P, Colinart P, et al. Study of the fouling effect of antifoam compounds on the crossflow filtration of yeast suspensions. Sep Sci Technol. 1995;30(5):731–50. https://doi.org/10.1080/01496399508013889.

    Article  CAS  Google Scholar 

  84. Mitchell DA, Krieger N, Berovic M, editors. Solid-state fermentation bioreactors: fundamentals of design and operation. Berlin: Springer; 2006.

    Google Scholar 

  85. Mitchell DA, De Lima Luz LF, Krieger N. Bioreactors for solid-state fermentation. In: Moo-Yong M, editor. Comprehensive biotechnology. 2nd ed. Manchester: Elsevier; 2011. p. 347–60.

    Chapter  Google Scholar 

  86. Moukamnerd C, Kawahara H, Katakura Y. Feasibility study of ethanol production from food wastes by consolidated continuous solid-state fermentation. J Sustain Bioenergy Syst. 2013;3(02):143–8. https://doi.org/10.4236/jsbs.2013.32020.

    Article  CAS  Google Scholar 

  87. Mukhtar H, Ikram-Ul-Haq. Production of acid protease by Aspergillus niger using solid state fermentation. Pakistan J. Zool. 2009;41(4):253–60.

    CAS  Google Scholar 

  88. Musselman ME, Pettit RS, Derenski KL. A review and up-date of red yeast rice. J Evid Based Complementary Altern Med. 2011;17(1):33–9. https://doi.org/10.1177/2156587211429703.

    Article  CAS  Google Scholar 

  89. Nagavalli M, Ponamgi S, Girijashankar V, et al. Solid state fermentation and production of rifamycin SV using Amycolatopsis mediterranei. Lett Appl Microbiol. 2014;60(1):44–51. https://doi.org/10.1111/lam.12332.

    Article  CAS  PubMed  Google Scholar 

  90. Nayanashree G, Thippeswamy B. Natural rubber degradation by laccase and manganese peroxidase enzymes of Penicillium chrysogenum. Int J Environ Sci Technol. 2014;12(8):2665–72. https://doi.org/10.1007/s13762-014-0636-6.

    Article  CAS  Google Scholar 

  91. Neidhardt FC, editor. Escherichia coli and Salmonella: cellular and molecular biology (2 Volumes). 2nd ed. Washington, D.C.: ASM Press; 1996.

    Google Scholar 

  92. Nitschke M, Pastore GM. Biosurfactant production by Bacillus subtilis using cassava-processing effluent. Appl Biochem Biotechnol. 2004;112(3):163–72. https://doi.org/10.1385/ABAB:112:3:163.

    Article  CAS  PubMed  Google Scholar 

  93. Nitschke M, Pastore GM. Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresour Technol. 2006;97(2):336–41. https://doi.org/10.1016/j.biortech.2005.02.044.

    Article  CAS  PubMed  Google Scholar 

  94. Noah KS, Bruhn DF, Bala GA. Surfactin production from potato process effluent by Bacillus subtilis in a chemostat. In: Davison BH, editor. Twenty-sixth symposium on biotechnology for fuels and chemicals. New York: Springer; 2005. p. 465–73.

    Chapter  Google Scholar 

  95. O’Toole DK. Characteristics and use of Okara, the soybean residue from soy milk production – a review. J Agric Food Chem. 1999;47(2):363–71. https://doi.org/10.1021/jf980754l.

  96. Ohno A, Ano T, Shoda M. Production of a lipopeptide antibiotic surfactin with recombinant Bacillus subtilis. Biotechnol Lett. 1992;14(12):1165–8. https://doi.org/10.1007/BF01027022.

    Article  CAS  Google Scholar 

  97. Pratoomchai R. Increasing the value of rice by transformation into red yeast rice. J Sci Technol MSU. 2015;34(5):503–12.

    Google Scholar 

  98. Priatni S, Damayanti S, Saraswaty V, et al. The utilization of solid substrates on Monascus fermentation for anticholesterol agent production. Procedia Chem. 2014;9:34–9. https://doi.org/10.1016/j.proche.2014.05.005.

    Article  CAS  Google Scholar 

  99. Prins A, van’t Riet K. Proteins and surface effects in fermentation: foam, antifoam and mass transfer. Trends Biotechnol. 1987;5(11):296–301. https://doi.org/10.1016/0167-7799(87)90080-1.

    Article  CAS  Google Scholar 

  100. Pritchett J, Baldwin SA. The effect of nitrogen source on yield and glycosylation of a human cystatin C mutant expressed in Pichia pastoris. J Ind Microbiol Biotechnol. 2004;31(12):553–8. https://doi.org/10.1007/s10295-004-0181-2.

    Article  CAS  PubMed  Google Scholar 

  101. Quesada-Chanto A, Afschar AS, Wagner F. Microbial production of propionic acid and vitamin B12 using molasses or sugar. Appl Microbiol Biotechnol. 1994;41:378–83. https://doi.org/10.1007/BF01982523.

    Article  CAS  PubMed  Google Scholar 

  102. Rahardjo YS, Tramper J, Rinzema A. Modeling conversion and transport phenomena in solid-state fermentation: a review and perspectives. Biotechnol Adv. 2006;24(2):161–79. https://doi.org/10.1016/j.biotechadv.2005.09.002.

    Article  CAS  PubMed  Google Scholar 

  103. Ratzke C, Denk J, Gore J. Ecological suicide in microbes. Nat Ecol Evol. 2018;2(5):867–72. https://doi.org/10.1038/s41559-018-0535-1.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ravindran V, Abdollahi MR, Bootwalla SM. Nutrient analysis, metabolizable energy, and digestible amino acids of soybean meals of different origins for broilers. Poult Sci. 2014;93(10):2567–77. https://doi.org/10.3382/ps.2014-04068.

    Article  CAS  PubMed  Google Scholar 

  105. Riesenberg D, Schulz V, Knorre W, et al. High cell density cultivation of Escherichia coli at controlled specific growth rate. J Biotechnol. 1991;20(1):17–27. https://doi.org/10.1016/0168-1656(91)90032-q.

    Article  CAS  PubMed  Google Scholar 

  106. Rigo E, Ninow JL, Luccio MD, et al. Lipase production by solid fermentation of soybean meal with different supplements. LWT-Food Sci Technol. 2010;43(7):1132–7. https://doi.org/10.1016/j.lwt.2010.03.002.

    Article  CAS  Google Scholar 

  107. Rizzo G, Baroni L. Soy, soy foods and their role in vegetarian diets. Nutrients. 2018;10(1):43. https://doi.org/10.3390/nu10010043.

    Article  CAS  PubMed Central  Google Scholar 

  108. Rodrigues MI, Iemma AF. Experimental design and process optimization. Boca Raton: CRC Press; 2014.

    Book  Google Scholar 

  109. Rokem JS, Lantz AE, Nielsen J. Systems biology of antibiotic production by microorganisms. Nat Prod Rep. 2007;24(6):1262–87. https://doi.org/10.1039/b617765b.

    Article  CAS  PubMed  Google Scholar 

  110. Routledge SJ. Antifoams: the overlooked additive? Pharm Bioprocess. 2014;2(2):103–6. https://doi.org/10.2217/PBP.14.5.

    Article  Google Scholar 

  111. Routledge SJ, Bill RM. The effect of antifoam addition on protein production yields. In: Bill RM, editor. Recombinant protein production in yeast: methods and protocols. Totowa: Humana Press; 2012. p. 87–97.

    Chapter  Google Scholar 

  112. Rufino RD, Sarubbo LA, Campos-Takaki GM. Enhancement of stability of biosurfactant produced by Candida lipolytica using industrial residue as substrate. World J Microbiol Biotechnol. 2006;23(5):729–34. https://doi.org/10.1007/s11274-006-9278-2.

    Article  CAS  Google Scholar 

  113. Sabu A, Sarita S, Pandey A, et al. Solid-state fermentation for production of phytase by Rhizopus oligosporus. Appl Biochem Biotechnol. 2002;102(1):251–60. https://doi.org/10.1385/ABAB:102-103:1-6:251.

    Article  PubMed  Google Scholar 

  114. Sakiewicz P, Piotrowski K, Cebula J, et al. Alternative utilization of protein-rich waste by its conversion into biogas in co-fermentation conditions. Pol J Environ Stud. 2017;26(3):1225–31. https://doi.org/10.15244/pjoes/68189.

    Article  CAS  Google Scholar 

  115. Sastraatmadja DD, Tomita F, Kasai T. Production of high-quality Oncom, a traditional Indonesian fermented food, by the inoculation with selected mold strains in the form of pure culture and solid inoculum. J Grad Sch Agr Hokkaido Univ. 2002;70(2):111–27.

    Google Scholar 

  116. Shabtai Y. Production of exopolysaccharides by Acinetobacter strains in a controlled fed-batch fermentation process using soap stock oil (SSO) as carbon source. Int J Biol Macromol. 1990;12(2):145–52. https://doi.org/10.1016/0141-8130(90)90066-j.

    Article  CAS  PubMed  Google Scholar 

  117. Sheppard JD, Mulligan CN. The production of surfactin by Bacillus subtilis grown on peat hydrolysate. Appl Microbiol Biotechnol. 1987;27(2):110–6. https://doi.org/10.1007/BF00251931.

    Article  CAS  Google Scholar 

  118. Shibasaki K, Hesseltine CW. Miso – I. Preparation of soybeans for fermentation. J Biochem Microbiol Technol Eng. 1961;3(2):161–74. https://doi.org/10.1002/jbmte.390030206.

  119. Shiloach J, Fass R. Growing E. coli to high cell density – a historical perspective on method development. Biotechnol Adv. 2005;23(5):345–57. https://doi.org/10.1016/j.biotechadv.2005.04.004.

  120. Shurtleff W, Aoyagi A. History of fermented black soybeans (165 BC to 2011): extensively annotated bibliography and sourcebook. Lafayette: Soyinfo Center; 2011.

    Google Scholar 

  121. Singh SM, Panda AK. Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng. 2005;99(4):303–10. https://doi.org/10.1263/jbb.99.303.

    Article  CAS  PubMed  Google Scholar 

  122. Singh V, Haque S, Niwas R, et al. Strategies for fermentation medium optimization: an in-depth review. Front Microbiol. 2017;7:2087. https://doi.org/10.3389/fmicb.2016.02087.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Siso M. The biotechnological utilization of cheese whey: a review. Bioresour Technol. 1996;57(1):1–11. https://doi.org/10.1016/0960-8524(96)00036-3.

    Article  Google Scholar 

  124. Skrypnik K, Suliburska J. Association between the gut microbiota and mineral metabolism. J Sci Food Agric. 2018;98(7):2449–60. https://doi.org/10.1002/jsfa.8724.

    Article  CAS  PubMed  Google Scholar 

  125. Solaiman DK, Ashby RD, Nunez A, et al. Production of sophorolipids by Candida bombicola grown on soy molasses as substrate. Biotechnol Lett. 2004;26(15):1241–5. https://doi.org/10.1023/B:BILE.0000036605.80577.30.

    Article  CAS  PubMed  Google Scholar 

  126. Solaiman DKY, Ashby RD, Zerkowski JA, et al. Simplified soy molasses-based medium for reduced-cost production of sophorolipids by Candida bombicola. Biotechnol Lett. 2007;29(9):1341–7. https://doi.org/10.1007/s10529-007-9407-5.

    Article  CAS  PubMed  Google Scholar 

  127. Stanbury PF, Whitaker A, Hall SJ. Principles of fermentation technology. 2nd ed. Tarrytown: Pergamon; 1995.

    Google Scholar 

  128. Sun N, Wang Y, Li YT, et al. Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (chlorophyta). Process Biochem. 2008;43(11):1288–92. https://doi.org/10.1016/j.procbio.2008.07.014.

    Article  CAS  Google Scholar 

  129. Surono IS. Ethnic fermented foods and beverages of Indonesia. In: Tamang YP, editor. Ethnic fermented foods and alcoholic beverages of Asia. Delhi: Springer; 2016. p. 341–82.

    Chapter  Google Scholar 

  130. Syed R, Saggar S, Tate K, et al. Assessing the performance of floating biofilters for oxidation of methane from dairy effluent ponds. J Environ Qual. 2017;46(2):272–80. https://doi.org/10.2134/jeq2016.08.0310.

    Article  CAS  PubMed  Google Scholar 

  131. Tao TL, Cui FJ, Chen XX, et al. Improved mycelia and polysaccharide production of Grifola frondosa by controlling morphology with microparticle Talc. Microb Cell Fact. 2018;17(1) https://doi.org/10.1186/s12934-017-0850-2.

  132. Thomas L, Larroche C, Pandey A. Current developments in solid-state fermentation. Biochem Eng J. 2013;81:146–61. https://doi.org/10.1016/j.bej.2013.10.013.

    Article  CAS  Google Scholar 

  133. Thompson DN, Fox SL, Bala GA. The effect of pretreatments on surfactin production from potato process effluent by Bacillus subtilis. In: Davison BH, McMillan JD, Finkelstein M, editors. Twenty-second symposium on biotechnology for fuels and chemicals. New York: Springer; 2001. p. 487–501.

    Chapter  Google Scholar 

  134. Torzillo G, Pushparaj B, Masojidek J, et al. Biological constraints in algal biotechnology. Biotechnol Bioprocess Eng. 2003;8(6):338–48. https://doi.org/10.1007/BF02949277.

    Article  CAS  Google Scholar 

  135. Tripathi NK. Production and purification of recombinant proteins from Escherichia coli. ChemBioEng Rev. 2016;3(3):116–33. https://doi.org/10.1002/cben.201600002.

    Article  CAS  Google Scholar 

  136. ul Haq I, Idrees S, Rajoka M. Production of lipases by Rhizopus oligosporous by solid-state fermentation. Process Biochem. 2002;37(6):637–41. https://doi.org/10.1016/s0032-9592(01)00252-7.

    Article  CAS  Google Scholar 

  137. Valero F, del Rio JL, Poch M, et al. Fermentation behaviour of lipase production by Candida rugosa growing on different mixtures of glucose and olive oil. J Ferment Bioeng. 1991;72(5):399–401. https://doi.org/10.1016/0922-338x(91)90095-x.

    Article  CAS  Google Scholar 

  138. Van Niel E, Hahn-Hägerdal B. Nutrient requirements of lactococci in defined growth media. Appl Microbiol Biotechnol. 1999;52(5):617–27. https://doi.org/10.1007/s002530051569.

    Article  Google Scholar 

  139. Walker GM, White NA. Introduction to fungal physiology. In: Kavanagh K, editor. Fungi, biology and applications. 3rd ed. Hoboken: Wiley-Blackwell; 2017. p. 1–34.

    Google Scholar 

  140. Wan M, Zhang Z, Wang J, et al. Sequential heterotrophy-dilution-photoinduction cultivation of Haematococcus pluvialis for efficient production of astaxanthin. Bioresour Technol. 2015;198:557–63. https://doi.org/10.1016/j.biortech.2015.09.031.

    Article  CAS  PubMed  Google Scholar 

  141. Welch RM. The biological significance of nickel. J Plant Nutr. 1981;3(1-4):345–56. https://doi.org/10.1080/01904168109362843.

    Article  CAS  Google Scholar 

  142. Xin F, Geng A. Horticultural waste as the substrate for cellulase and hemicellulase production by Trichoderma reesei under solid-state fermentation. Appl Biochem Biotechnol. 2009;162(1):295–306. https://doi.org/10.1007/s12010-009-8745-2.

    Article  CAS  PubMed  Google Scholar 

  143. Yan D, Lu Y, Chen YF, et al. Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresour Technol. 2011;102(11):6487–93. https://doi.org/10.1016/j.biortech.2011.03.036.

    Article  CAS  PubMed  Google Scholar 

  144. Yang J, Yang Y, Wu WM, et al. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol. 2014;48(23):13776–84. https://doi.org/10.1021/es504038a.

    Article  CAS  PubMed  Google Scholar 

  145. Zhang J, Martin C, Shifflet M, et al. Development of a defined medium fermentation process for physostigmine production by Streptomyces griseofuscus. Appl Microbiol Biotechnol. 1996;44(5):568–75. https://doi.org/10.1007/BF00172487.

    Article  CAS  PubMed  Google Scholar 

  146. Zhang G, Mills DA, Block DE. Development of chemically defined media supporting high-cell-density growth of lactococci, enterococci, and streptococci. Appl Environ Microbiol. 2008a;75(4):1080–7. https://doi.org/10.1128/aem.01416-08.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Zhang Y, Xin J, Chen L, et al. Biosynthesis of poly-3-hydroxybutyrate with a high molecular weight by methanotroph from methane and methanol. J Nat Gas Chem. 2008b;17(1):103–9. https://doi.org/10.1016/s1003-9953(08)60034-1.

    Article  Google Scholar 

  148. Zhao G, Yao Y, Wang C, et al. Comparative genomic analysis of Aspergillus oryzae strains 3.042 and RIB40 for soy sauce fermentation. Int J Food Microbiol. 2013;164(2-3):148–54. https://doi.org/10.1016/j.ijfoodmicro.2013.03.027.

    Article  CAS  PubMed  Google Scholar 

  149. Zheng XW, Han BZ. Baijiu, Chinese liquor: history, classification and manufacture. J Ethnic Foods. 2016;3(1):19–25. https://doi.org/10.1016/j.jef.2016.03.001.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge and thank Callaghan Innovation (New Zealand’s Innovation Agency) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuguang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Allikian, K., Edgar, R., Syed, R., Zhang, S. (2019). Fundamentals of Fermentation Media. In: Berenjian, A. (eds) Essentials in Fermentation Technology. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16230-6_2

Download citation

Publish with us

Policies and ethics