Skip to main content

Generalizations of Weighted Matroid Congestion Games: Pure Nash Equilibrium, Sensitivity Analysis, and Discrete Convex Function

  • Conference paper
  • First Online:
Theory and Applications of Models of Computation (TAMC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11436))

Abstract

Congestion games provide a model of human’s behavior of choosing an optimal strategy while avoiding congestion. In the past decade, matroid congestion games have been actively studied and their good properties have been revealed. In most of the previous work, the cost functions are assumed to be univariate or bivariate. In this paper, we discuss generalizations of matroid congestion games in which the cost functions are n-variate, where n is the number of players. First, we prove the existence of pure Nash equilibria in matroid congestion games with monotone cost functions, which extends that for weighted matroid congestion games by Ackermann, Röglin, and Vöcking (2009). Second, we prove the existence of pure Nash equilibria in matroid resource buying games with submodular cost functions, which extends that for matroid resource buying games with marginally nonincreasing cost functions by Harks and Peis (2014). Finally, motivated from polymatroid congestion games with \(\mathrm {M}^\natural \)-convex cost functions, we conduct sensitivity analysis for separable \(\mathrm {M}^\natural \)-convex optimization, which extends that for separable convex optimization over base polyhedra by Harks, Klimm, and Peis (2018).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure on congestion games. J. ACM 55(6), 25:1–25:22 (2008). https://doi.org/10.1145/1455248.1455249

    Article  MathSciNet  MATH  Google Scholar 

  2. Ackermann, H., Röglin, H., Vöcking, B.: Pure Nash equilibria in player-specific and weighted congestion games. Theor. Comput. Sci. 410(17), 1552–1563 (2009). https://doi.org/10.1016/j.tcs.2008.12.035

    Article  MathSciNet  MATH  Google Scholar 

  3. Bhaskar, U., Fleischer, L., Hoy, D., Huang, C.-C.: On the uniqueness of equilibrium in atomic splittable routing games. Math. Oper. Res. 40(3), 634–654 (2015). https://doi.org/10.1287/moor.2014.0688

    Article  MathSciNet  MATH  Google Scholar 

  4. Cominetti, R., Correa, J.R., Moses, N.E.S.: The impact of oligopolistic competition in networks. Oper. Res. 57(6), 1421–1437 (2009). https://doi.org/10.1287/opre.1080.0653

    Article  MathSciNet  MATH  Google Scholar 

  5. Fujishige, S.: Submodular Functions and Optimization. Annals of Discrete Mathematics, vol. 58, 2nd edn. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

  6. Fujishige, S., Goemans, M.X., Harks, T., Peis, B., Zenklusen, R.: Congestion games viewed from M-convexity. Oper. Res. Lett. 43(3), 329–333 (2015). https://doi.org/10.1016/j.orl.2015.04.002

    Article  MathSciNet  MATH  Google Scholar 

  7. Fujishige, S., Goemans, M.X., Harks, T., Peis, B., Zenklusen, R.: Matroids are immune to Braess’ paradox. Math. Oper. Res. 42(3), 745–761 (2017). https://doi.org/10.1287/moor.2016.0825

    Article  MathSciNet  MATH  Google Scholar 

  8. Harks, T., Klimm, M., Peis, B.: Sensitivity analysis for convex separable optimization over integeral polymatroids. SIAM J. Optim. 28, 2222–2245 (2018). https://doi.org/10.1137/16M1107450

    Article  MathSciNet  MATH  Google Scholar 

  9. Harks, T., Peis, B.: Resource buying games. Algorithmica 70(3), 493–512 (2014). https://doi.org/10.1007/s00453-014-9876-6

    Article  MathSciNet  MATH  Google Scholar 

  10. Harks, T., Peis, B.: Resource buying games. In: Schulz, A.S., Skutella, M., Stiller, S., Wagner, D. (eds.) Gems of Combinatorial Optimization and Graph Algorithms, pp. 103–111. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24971-1_10

    Chapter  Google Scholar 

  11. Harks, T., Timmermans, V.: Uniqueness of equilibria in atomic splittable polymatroid congestion games. J. Comb. Optim. 36(3), 812–830 (2018). https://doi.org/10.1007/s10878-017-0166-5

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, C.-C.: Collusion in atomic splittable routing games. Theory Comput. Syst. 52(4), 763–801 (2013). https://doi.org/10.1007/s00224-012-9421-4

    Article  MathSciNet  MATH  Google Scholar 

  13. Moriguchi, S., Shioura, A., Tsuchimura, N.: \(\rm M\)-convex function minimization by continuous relaxation approach: proximity theorem and algorithm. SIAM J. Optim. 21(3), 633–668 (2011). https://doi.org/10.1137/080736156

    Article  MathSciNet  MATH  Google Scholar 

  14. Murota, K.: Convexity and Steinitz’s exchange property. Adv. Math. 125, 272–331 (1996). https://doi.org/10.1006/aima.1996.0084

    Article  MathSciNet  MATH  Google Scholar 

  15. Murota, K.: Discrete Convex Analysis. Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Book  Google Scholar 

  16. Murota, K.: Discrete convex analysis: a tool for economics and game theory. J. Mech. Inst. Des. 1, 151–273 (2016). https://doi.org/10.22574/jmid.2016.12.005

    Article  Google Scholar 

  17. Murota, K., Shioura, A.: M-convex function on generalized polymatroid. Math. Oper. Res. 24, 95–105 (1999). https://doi.org/10.1287/moor.24.1.95

    Article  MathSciNet  MATH  Google Scholar 

  18. Murota, K., Tamura, A.: Proximity theorems of discrete convex functions. Math. Program. 99(3), 539–562 (2004). https://doi.org/10.1007/s10107-003-0466-7

    Article  MathSciNet  MATH  Google Scholar 

  19. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2, 65–67 (1973). https://doi.org/10.1007/BF01737559

    Article  MathSciNet  MATH  Google Scholar 

  20. Schrijver, A.: Combinatorial Optimization - Polyhedra and Eciency. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  21. Tran-Thanh, L., Polukarov, M., Chapman, A., Rogers, A., Jennings, N.R.: On the existence of pure strategy Nash equilibria in integer–splittable weighted congestion games. In: Persiano, G. (ed.) SAGT 2011. LNCS, vol. 6982, pp. 236–253. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24829-0_22

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is partially supported by JSPS KAKENHI Grant Numbers JP16K16012, JP26280001, JP26280004, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenjiro Takazawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Takazawa, K. (2019). Generalizations of Weighted Matroid Congestion Games: Pure Nash Equilibrium, Sensitivity Analysis, and Discrete Convex Function. In: Gopal, T., Watada, J. (eds) Theory and Applications of Models of Computation. TAMC 2019. Lecture Notes in Computer Science(), vol 11436. Springer, Cham. https://doi.org/10.1007/978-3-030-14812-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14812-6_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14811-9

  • Online ISBN: 978-3-030-14812-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics