Skip to main content

Genome-Wide Response to Drugs and Stress in the Pathogenic Yeast Candida glabrata

  • Chapter
  • First Online:
Yeasts in Biotechnology and Human Health

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 58))

Abstract

Candida glabrata is the second most common cause of candidemia worldwide and its prevalence has continuously increased over the last decades. C. glabrata infections are especially worrisome in immunocompromised patients, resulting in serious systemic infections, associated to high mortality rates. Intrinsic resistance to azole antifungals, widely used drugs in the clinical setting, and the ability to efficiently colonize the human host and medical devices, withstanding stress imposed by the immune system, are thought to underlie the emergence of C. glabrata. There is a clear clinical need to understand drug and stress resistance in C. glabrata. The increasing prevalence of multidrug resistant isolates needs to be addressed in order to overcome the decrease of viable therapeutic strategies and find new therapeutic targets. Likewise, the understanding of the mechanisms underlying its impressive ability thrive under oxidative, nitrosative, acidic and metabolic stresses, is crucial to design drugs that target these pathogenesis features. The study of the underlying mechanisms that translate C. glabrata plasticity and its competence to evade the immune system, as well as survive host stresses to establish infection, will benefit from extensive scrutiny. This chapter provides a review on the contribution of genome-wide studies to uncover clinically relevant drug resistance and stress response mechanisms in the human pathogenic yeast C. glabrata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida RS, Wilson D, Hube B (2009) Candida albicans iron acquisition within the host. FEMS Yeast Res. https://doi.org/10.1111/j.1567-1364.2009.00570.x

  • Anderson JB (2005) Evolution of antifungal-drug resistance: mechanisms and pathogen fitness. Nat Rev Microbiol 3:547–556

    Article  CAS  Google Scholar 

  • Anderson TM, Clay MC, Cioffi AG et al (2014) Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat Chem Biol 10:400–406

    Article  CAS  Google Scholar 

  • Andes D (2003) In vivo pharmacodynamics of antifungal drugs in treatment of candidiasis. Antimicrob Agents Chemother 47:1179–1186

    Article  CAS  Google Scholar 

  • Bairwa G, Kaur R (2011) A novel role for a glycosylphosphatidylinositol-anchored aspartyl protease, CgYps1, in the regulation of pH homeostasis in Candida glabrata. Mol Microbiol. https://doi.org/10.1111/j.1365-2958.2010.07496.x

  • Benson JM, Nahata MC (1988) Clinical use of systemic antifungal agents. Clin Pharm 7:424–438

    CAS  PubMed  Google Scholar 

  • Bernardo RT, Cunha D V, Wang C, et al (2017) The CgHaa1-regulon mediates response and tolerance to acetic acid stress in the human pathogen Candida glabrata. G3 (Bethesda). https://doi.org/10.1534/g3.116.034660

  • Borst A, Raimer MT, Warnock DW, Morrison CJ, Arthington-Skaggs BA (2005) Rapid acquisition of stable azole resistance by Candida glabrata isolates obtained before the clinical introduction of fluconazole. Antimicrob Agents Chemother 49:783–787

    Article  CAS  Google Scholar 

  • Briones-Martin-Del-Campo M, Orta-Zavalza E, Juarez-Cepeda J, Gutierrez-Escobedo G, Cañas-Villamar I, Castaño I, De Las Peñas A (2014) The oxidative stress response of the opportunistic fungal pathogen Candida glabrata. Rev Iberoam Micol. https://doi.org/10.1016/j.riam.2013.09.012

  • Brown AJ, Haynes K, Quinn J (2009) Nitrosative and oxidative stress responses in fungal pathogenicity. Curr Opin Microbiol. https://doi.org/10.1016/j.mib.2009.06.007

  • Brun S, Bergès T, Poupard P, Vauzelle-Moreau C, Renier G, Chabasse D, Bouchara J-P (2004) Mechanisms of azole resistance in petite mutants of Candida glabrata. Antimicrob Agents Chemother 48:1788–1796

    Article  CAS  Google Scholar 

  • Brunke S, Hube B (2013) Two unlike cousins: Candida albicans and C. glabrata infection strategies. Cell Microbiol. https://doi.org/10.1111/cmi.12091

  • Caudle KE, Barker KS, Wiederhold NP, Xu L, Homayouni R, Rogers PD (2011) Genomewide expression profile analysis of the Candida glabrata Pdr1 regulon. Eukaryot Cell 10:373–383

    Article  CAS  Google Scholar 

  • Cellier MF, Courville P, Campion C (2007) Nramp1 phagocyte intracellular metal withdrawal defense. Microbes Infect. https://doi.org/10.1016/j.micinf.2007.09.006

  • Chapeland-Leclerc F, Hennequin C, Papon N, Noel T, Girard A, Socie G, Ribaud P, Lacroix C (2010) Acquisition of flucytosine, azole, and caspofungin resistance in Candida glabrata bloodstream isolates serially obtained from a hematopoietic stem cell transplant recipient. Antimicrob Agents Chemother 54:1360–1362

    Article  CAS  Google Scholar 

  • Charizanis C, Juhnke H, Krems B, Entian KD (1999) The mitochondrial cytochrome c peroxidase Ccp1 of Saccharomyces cerevisiae is involved in conveying an oxidative stress signal to the transcription factor Pos9 (Skn7). Mol Gen Genet. https://doi.org/10.1007/s004380051103

  • Chen K-H, Miyazaki T, Tsai H-F, Bennett JE (2007) The bZip transcription factor Cgap1p is involved in multidrug resistance and required for activation of multidrug transporter gene CgFLR1 in Candida glabrata. Gene 386:63–72

    Article  CAS  Google Scholar 

  • Chen Y-L, Konieczka JH, Springer DJ et al (2012) Convergent evolution of calcineurin pathway roles in thermotolerance and virulence in Candida glabrata. G3: Genes Genomes Genet 2:675–691

    Google Scholar 

  • Cho E-J, Shin JH, Kim SH, Kim H-K, Park JS, Sung H, Kim M-N, Im HJ (2014) Emergence of multiple resistance profiles involving azoles, echinocandins and amphotericin B in Candida glabrata isolates from a neutropenia patient with prolonged fungaemia. J Antimicrob Chemother 70:1268–1270

    PubMed  Google Scholar 

  • Costa C, Pires C, Cabrito TR, Renaudin A, Ohno M, Chibana H, Sá-Correia I, Teixeira MC (2013a) Candida glabrata drug: H + antiporter CgQdr2 confers imidazole drug resistance, being activated by transcription factor CgPdr1. Antimicrob Agents Chemother. https://doi.org/10.1128/aac.00811-12

  • Costa C, Henriques A, Pires C, Nunes J, Ohno M, Chibana H, Sá-Correia I, Teixeira MC (2013b) The dual role of candida glabrata drug:H + antiporter CgAqr1 (ORF CAGL0J09944 g) in antifungal drug and acetic acid resistance. Front Microbiol. https://doi.org/10.3389/fmicb.2013.00170

  • Costa C, Nunes J, Henriques A, Mira NP, Nakayama H, Chibana H, Teixeira MC (2014) Candida glabrata drug:H + antiporter CgTpo3 (ORF CAGL0I10384G): role in azole drug resistance and polyamine homeostasis. J Antimicrob Chemother 69:1767–1776

    Article  CAS  Google Scholar 

  • Costa-de-Oliveira S, Marcos Miranda I, Silva RM, Pinto E Silva A, Rocha R, Amorim A, Gonçalves Rodrigues A, Pina-Vaz C (2011) FKS2 mutations associated with decreased echinocandin susceptibility of Candida glabrata following anidulafungin therapy. Antimicrob Agents Chemother 55:1312–1314

    Google Scholar 

  • Cota JM, Grabinski JL, Talbert RL, Burgess DS, Rogers PD, Edlind TD, Wiederhold NP (2008) Increases in SLT2 expression and chitin content are associated with incomplete killing of Candida glabrata by caspofungin. Antimicrob Agents Chemother 52:1144–1146

    Article  CAS  Google Scholar 

  • Cowen LE, Nantel A, Whiteway MS, Thomas DY, Tessier DC, Kohn LM, Anderson JB (2002) Population genomics of drug resistance in Candida albicans. Proc Natl Acad Sci U S A 99:9284–9289

    Article  CAS  Google Scholar 

  • Csank C, Haynes K (2000) Candida glabrata displays pseudohyphal growth. FEMS Microbiol Lett. https://doi.org/10.1016/s0378-1097(00)00241-x

  • Cuéllar-Cruz M, Briones-Martin-del-Campo M, Cañas-Villamar I, Montalvo-Arredondo J, Riego-Ruiz L, Castaño I, De Las Peñas A (2008) High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p. Eukaryot Cell. https://doi.org/10.1128/ec.00011-08

  • Dannaoui E, Desnos-Ollivier M, Garcia-Hermoso D, Grenouillet F, Cassaing S, Baixench M-T, Bretagne S, Dromer F, Lortholary O, French Mycoses Study Group the FMS (2012) Candida spp. with acquired echinocandin resistance, France, 2004–2010. Emerg Infect Dis 18:86–90

    Google Scholar 

  • De Pauw BE (2000) New antifungal agents and preparations. Int J Antimicrob Agents 16:147–150

    Article  Google Scholar 

  • Defontaine A, Bouchara J-P, Declerk P, Planchenault C, Chabasse D, Hallet J-N (1999) In-vitro resistance to azoles associated with mitochondrial DNA deficiency in Candida glabrata. J Med Microbiol 48:663–670

    Google Scholar 

  • Dementhon K, El-Kirat-Chatel S, Noël T (2012) Development of an in vitro model for the multi-parametric quantification of the cellular interactions between Candida yeasts and phagocytes. PLoS One. https://doi.org/10.1371/journal.pone.0032621

  • Denning DW (2003) Echinocandin antifungal drugs. Lancet 362:1142–1151

    Article  CAS  Google Scholar 

  • Dowell JA, Knebel W, Ludden T, Stogniew M, Krause D, Henkel T (2004) Population pharmacokinetic analysis of anidulafungin, an echinocandin antifungal. J Clin Pharmacol 44:590–598

    Article  CAS  Google Scholar 

  • Duschinsky R, Pleven E, Heidelberger C (1957) The synthesis of 5-fluoropyrimidines. J Am Chem Soc 79:4559–4560

    Article  CAS  Google Scholar 

  • Eicher T, Hauptmann S, Speicher A (2012) The chemistry of heterocycles: structure, reactions, synthesis and applications. Wiley-VCH

    Google Scholar 

  • Ferrari S, Ischer F, Calabrese D, Posteraro B, Sanguinetti M, Fadda G, Rohde B, Bauser C, Bader O, Sanglard D (2009) Gain of function mutations in CgPDR1 of Candida glabrata not only mediate antifungal resistance but also enhance virulence. PLoS Pathog 5:e1000268

    Article  Google Scholar 

  • Fetter R, Kwon-Chung KJ (1996) Disruption of the SNF1 gene abolishes trehalose utilization in the pathogenic yeast Candida glabrata. Infect, Immun

    Google Scholar 

  • Forbes JR, Gros P (2001) Divalent-metal transport by NRAMP proteins at the interface of host-pathogen interactions. Trends Microbiol. https://doi.org/10.1016/s0966-842x(01)02098-4

  • Fradin C, De Groot P, MacCallum D, Schaller M, Klis F, Odds FC, Hube B (2005) Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol. https://doi.org/10.1111/j.1365-2958.2005.04557.x

  • Fukuda Y, Tsai HF, Myers TG, Bennett JE (2013) Transcriptional profiling of Candida glabrata during phagocytosis by neutrophils and in the infected mouse spleen. Infect Immun. https://doi.org/10.1128/iai.00851-12

  • Garcia-Effron G, Park S, Perlin DS (2009a) Correlating echinocandin MIC and kinetic inhibition of fks1 mutant glucan synthases for Candida albicans: implications for interpretive breakpoints. Antimicrob Agents Chemother 53:112–122

    Google Scholar 

  • Garcia-Effron G, Lee S, Park S, Cleary JD, Perlin DS (2009b) Effect of Candida glabrata FKS1 and FKS2 mutations on echinocandin sensitivity and kinetics of 1,3-beta-D-glucan synthase: implication for the existing susceptibility breakpoint. Antimicrob Agents Chemother 53:3690–3699

    Google Scholar 

  • Gerwien F, Safyan A, Wisgott S, Hille F, Kaemmer P, Linde J, Brunke S, Kasper L, Hube B (2016) A novel hybrid iron regulation network combines features from pathogenic and nonpathogenic yeasts. MBio. https://doi.org/10.1128/mbio.01782-16

  • Gow NAR, Netea MG, Munro CA et al (2007) Immune recognition of Candida albicans beta-glucan by dectin-1. J Infect Dis. https://doi.org/10.1086/523110

  • Haas A (2007) The phagosome: compartment with a license to kill. Traffic. https://doi.org/10.1111/j.1600-0854.2006.00531.x

  • Hallstrom TC, Moye-Rowley WS (2000) Multiple signals from dysfunctional mitochondria activate the pleiotropic drug resistance pathway in Saccharomyces cerevisiae. J Biol Chem 275:37347–37356

    Article  CAS  Google Scholar 

  • Healey KR, Katiyar SK, Raj S, Edlind TD (2012) CRS-MIS in Candida glabrata: sphingolipids modulate echinocandin-Fks interaction. Mol Microbiol 86:303–313

    Article  CAS  Google Scholar 

  • Holtzman DA, Yang S, Drubin DG (1993) Synthetic-lethal interactions identify two novel genes, SLA1 and SLA2, that control membrane cytoskeleton assembly in Saccharomyces cerevisiae. J Cell Biol 122:635–644

    Article  CAS  Google Scholar 

  • Horak CE, Luscombe NM, Qian J, Bertone P, Piccirrillo S, Gerstein M, Snyder M (2002) Complex transcriptional circuitry at the G1/S transition in Saccharomyces cerevisiae. Genes Dev. https://doi.org/10.1101/gad.1039602

  • Hromatka BS (2005) Transcriptional response of Candida albicans to nitric oxide and the role of the YHB1 gene in nitrosative stress and virulence. Mol Biol Cell. https://doi.org/10.1091/mbc.e05-05-0435

  • Islahudin F, Khozoie C, Bates S, Ting K-N, Pleass RJ, Avery SV (2013) Cell wall perturbation sensitizes fungi to the antimalarial drug chloroquine. Antimicrob Agents Chemother 57:3889–3896

    Article  CAS  Google Scholar 

  • Jacobsen ID, Brunke S, Seider K, Schwarzmüller T, Firon A, D’Enfért C, Kuchler K, Hube B (2010) Candida glabrata persistence in mice does not depend on host immunosuppression and is unaffected by fungal amino acid auxotrophy. Infect Immun. https://doi.org/10.1128/iai.01244-09

  • Jelinsky SA, Estep P, Church GM, Samson LD (2000) Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes. Mol Cell Biol. https://doi.org/10.1128/mcb.20.21.8157-8167.2000

  • Kasper L, Seider K, Hube B (2015) Intracellular survival of Candida glabrata in macrophages: immune evasion and persistence. FEMS Yeast Res. https://doi.org/10.1093/femsyr/fov042

  • Katiyar S, Pfaller M, Edlind T (2006) Candida albicans and Candida glabrata clinical isolates exhibiting reduced echinocandin susceptibility. Antimicrob Agents Chemother 50:2892–2894

    Article  CAS  Google Scholar 

  • Kaur R, Castaño I, Cormack BP (2004) Functional genomic analysis of fluconazole susceptibility in the pathogenic yeast Candida glabrata: roles of calcium signaling and mitochondria. Antimicrob Agents Chemother 48:1600–1613

    Article  CAS  Google Scholar 

  • Kaur R, Domergue R, Zupancic ML, Cormack BP (2005) A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol. https://doi.org/10.1016/j.mib.2005.06.012

  • Kaur R, Ma B, Cormack BP (2007) A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.0611195104

  • Klimova N, Yeung R, Kachurina N, Turcotte B (2014) Phenotypic analysis of a family of transcriptional regulators, the zinc cluster proteins, in the human fungal pathogen Candida glabrata. G3 (Bethesda). https://doi.org/10.1534/g3.113.010199

  • Kobayashi D, Kondo K, Uehara N, Otokozawa S, Tsuji N, Yagihashi A, Watanabe N (2002) Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect. Antimicrob Agents Chemother 46:3113–3117

    Article  CAS  Google Scholar 

  • Krishnan BR, James KD, Polowy K, Bryant BJ, Vaidya A, Smith S, Laudeman CP (2017) CD101, a novel echinocandin with exceptional stability properties and enhanced aqueous solubility. J Antibiot (Tokyo) 70:130–135

    Article  CAS  Google Scholar 

  • Krogh-Madsen M, Arendrup MC, Heslet L, Knudsen JD (2006) Amphotericin B and caspofungin resistance in Candida glabrata Isolates recovered from a critically Ill patient. Clin Infect Dis 42:938–944

    Article  CAS  Google Scholar 

  • Lagadic-Gossmann D, Huc L, Lecureur V (2004) Alterations of intracellular pH homeostasis in apoptosis: Origins and roles. Cell Death Differ. https://doi.org/10.1038/sj.cdd.4401466

  • Lakota EA, Ong V, Flanagan S, Rubino CM (2018) Population pharmacokinetic analyses for rezafungin (CD101) efficacy using phase 1 data. Antimicrob Agents Chemother AAC.02603-17

    Google Scholar 

  • Lamping E, Lückl J, Paltauf F, Henry SA, Kohlwein SD (1994) Isolation and characterization of a mutant of Saccharomyces cerevisiae with pleiotropic deficiencies in transcriptional activation and repression. Genetics 137:55–65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larochelle M, Drouin S, Robert F, Turcotte B (2006) oxidative stress-activated zinc cluster protein Stb5 has dual activator/repressor functions required for pentose phosphate pathway regulation and NADPH production. Mol Cell Biol. https://doi.org/10.1128/mcb.02450-05

  • Le A, Farmakiotis D, Tarrand JJ, Kontoyiannis DP (2017) initial treatment of cancer patients with fluconazole-susceptible dose-dependent Candida glabrata fungemia: better outcome with an echinocandin or polyene compared to an azole? Antimicrob Agents Chemother 61:e00631-17

    Article  Google Scholar 

  • Lemke A, Kiderlen AF, Kayser O (2005) Amphotericin B. Appl Microbiol Biotechnol 68:151–162

    Article  CAS  Google Scholar 

  • Li L, Kashleva H, Dongari-Bagtzoglou A (2007) Cytotoxic and cytokine-inducing properties of Candida glabrata in single and mixed oral infection models. Microb Pathog. https://doi.org/10.1016/j.micpath.2006.12.003

  • Lin X, Qi Y, Yan D, Liu H, Chen X, Liu L (2017) CgMED3 changes membrane sterol composition to help Candida glabrata tolerate low-pH stress. Appl Environ Microbiol. https://doi.org/10.1128/aem.00972-17

  • Linde J, Duggan S, Weber M, et al (2015) Defining the transcriptomic landscape of Candida glabrata by RNA-Seq. Nucleic Acids Res. https://doi.org/10.1093/nar/gku1357

  • Lorenz MC, Fink GR (2001) The glyoxylate cycle is required for fungal virulence. Nature. https://doi.org/10.1038/35083594

  • Lorenz MC, Bender JA, Fink GR (2004) Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot Cell. https://doi.org/10.1128/ec.3.5.1076-1087.2004

  • Loureiro y Penha CV, Kubitschek PHB, Larcher G, Perales J, Rodriguez León I, Lopes-Bezerra LM, Bouchara JP (2010) Proteomic analysis of cytosolic proteins associated with petite mutations in Candida glabrata. Brazilian J Med Biol Res. https://doi.org/10.1590/s0100-879x2010007500125

  • Mahl CD, Behling CS, Hackenhaar FS, de Carvalho e Silva MN, Putti J, Salomon TB, Alves SH, Fuentefria A, Benfato MS (2015) Induction of ROS generation by fluconazole in Candida glabrata: activation of antioxidant enzymes and oxidative DNA damage. Diagn Microbiol Infect Dis 82:203–208

    Google Scholar 

  • Markovich S, Yekutiel A, Shalit I, Shadkchan Y, Osherov N (2004) Genomic approach to identification of mutations affecting caspofungin susceptibility in Saccharomyces cerevisiae. Antimicrob Agents Chemother. https://doi.org/10.1128/aac.48.10.3871-3876.2004

  • Masson PL, Heremans JF, Schonne E (1969) Lactoferrin, an iron-binding protein in neutrophilic leukocytes. J Exp Med. https://doi.org/10.1084/jem.130.3.643

  • Matsumoto E, Boyken L, Tendolkar S, McDanel J, Castanheira M, Pfaller M, Diekema D (2014) Candidemia surveillance in Iowa: emergence of echinocandin resistance. Diagn Microbiol Infect Dis 79:205–208

    Article  Google Scholar 

  • Mayers DL, Sobel JD, Ouellette M, Kaye KS, Marchaim D (eds) (2017) Antimicrobial drug resistance. https://doi.org/10.1007/978-3-319-46718-4

  • Merhej J, Delaveau T, Guitard J, Palancade B, Hennequin C, Garcia M, Lelandais G, Devaux F (2015) Yap7 is a transcriptional repressor of nitric oxide oxidase in yeasts, which arose from neofunctionalization after whole genome duplication. Mol Microbiol. https://doi.org/10.1111/mmi.12983

  • Miramón P, Kasper L, Hube B (2013) Thriving within the host: Candida spp. interactions with phagocytic cells. Med Microbiol Immunol. https://doi.org/10.1007/s00430-013-0288-z

  • Miyazaki H, Miyazaki Y, Geber A, Parkinson T, Hitchcock C, Falconer DJ, Ward DJ, Marsden K, Bennett JE (1998) Fluconazole resistance associated with drug efflux and increased transcription of a drug transporter gene, PDH1, in Candida glabrata. Antimicrob Agents Chemother 42:1695–1701

    Article  CAS  Google Scholar 

  • Monteiro PT, Pais P, Costa C, Manna S, Sa-Correia I, Teixeira MC (2017) The PathoYeastract database: an information system for the analysis of gene and genomic transcription regulation in pathogenic yeasts. Nucleic Acids Res 45:D597–D603

    Article  CAS  Google Scholar 

  • Naglik J, Albrecht A, Bader O, Hube B (2004) Candida albicans proteinases and host/pathogen interactions. Cell Microbiol. https://doi.org/10.1111/j.1462-5822.2004.00439.x

  • Netea MG, Gow NAR, Munro CA et al (2006) Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest. https://doi.org/10.1172/jci27114

  • Odds FC, Brown AJP, Gow NAR (2003) Antifungal agents: mechanisms of action. Trends Microbiol 11:272–279

    Article  CAS  Google Scholar 

  • Oku M, Sakai Y (2010) Peroxisomes as dynamic organelles: autophagic degradation. FEBS J. https://doi.org/10.1111/j.1742-4658.2010.07741.x

  • Orta-Zavalza E, Guerrero-Serrano G, Gutiérrez-Escobedo G, Cañas-Villamar I, Juárez-Cepeda J, Castaño I, De Las Peñas A (2013) Local silencing controls the oxidative stress response and the multidrug resistance in Candida glabrata. Mol Microbiol. https://doi.org/10.1111/mmi.12247

  • Otto V, Howard DH (1976) Further studies on the intracellular behavior of Torulopsis glabrata. Infect, Immun

    Google Scholar 

  • Pais P, Costa C, Pires C, Shimizu K, Chibana H, Teixeira MC (2016a) Membrane proteome-wide response to the antifungal drug clotrimazole in Candida glabrata: role of the transcription factor CgPdr1 and the Drug: H + antiporters CgTpo1_1 and CgTpo1_2. Mol Cell Proteomics 15:57–72

    Google Scholar 

  • Pais P, Pires C, Costa C, Okamoto M, Chibana H, Teixeira MC (2016b) Membrane proteomics analysis of the Candida glabrata response to 5-flucytosine: Unveiling the role and regulation of the drug efflux transporters CgFlr1 and CgFlr2. Front Microbiol. https://doi.org/10.3389/fmicb.2016.02045

  • Penalva MA, Arst HN (2002) Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol Mol Biol Rev. https://doi.org/10.1128/mmbr.66.3.426-446.2002

  • Petrikkos G, Skiada A (2007) Recent advances in antifungal chemotherapy. Int J Antimicrob Agents 30:108–117

    Article  CAS  Google Scholar 

  • Pfaller MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. https://doi.org/10.1128/cmr.00029-06

  • Polak A, Grenson M (1973) Evidence for a common transport system for cytosine, adenine and hypoxanthine in Saccharomyces cerevisiae and Candida albicans. Eur J Biochem 32:276–282

    Google Scholar 

  • Qi Y, Liu H, Yu J, Chen X, Liu L (2017) Med15B regulates acid stress response and tolerance in Candida glabrata. Appl Environ Microbiol. https://doi.org/10.1128/aem.01128-17

  • Rai MN, Balusu S, Gorityala N, Dandu L, Kaur R (2012) Functional genomic analysis of Candida glabrata-macrophage interaction: role of chromatin remodeling in virulence. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1002863

  • Rodrigues CF, Silva S, Henriques M (2014) Candida glabrata: a review of its features and resistance. Eur J Clin Microbiol Infect Dis 33:673–688

    Article  CAS  Google Scholar 

  • Roetzer A, Gregori C, Jennings AM, Quintin J, Ferrandon D, Butler G, Kuchler K, Ammerer G, Schüller C (2008) Candida glabrata environmental stress response involves Saccharomyces cerevisiae Msn2/4 orthologous transcription factors. Mol Microbiol. https://doi.org/10.1111/j.1365-2958.2008.06301.x

  • Roetzer A, Gratz N, Kovarik P, Schüller C (2010) Autophagy supports Candida glabrata survival during phagocytosis. Cell Microbiol. https://doi.org/10.1111/j.1462-5822.2009.01391.x

  • Roetzer A, Klopf E, Gratz N, Marcet-Houben M, Hiller E, Rupp S, Gabaldón T, Kovarik P, Schüller C (2011) Regulation of Candida glabrata oxidative stress resistance is adapted to host environment. FEBS Lett 585:319–327

    Article  CAS  Google Scholar 

  • Roger C, Sasso M, Lefrant JY, Muller L (2018) Antifungal dosing considerations in patients undergoing continuous renal replacement therapy. Curr Fungal Infect Rep 12:1–11

    Article  Google Scholar 

  • Rogers PD, Vermitsky J-P, Edlind TD, Hilliard GM (2006) Proteomic analysis of experimentally induced azole resistance in Candida glabrata. J Antimicrob Chemother 58:434–438

    Article  CAS  Google Scholar 

  • Rosenwald AG, Arora G, Ferrandino R, Gerace EL, Mohammednetej M, Nosair W, Rattila S, Subic AZ, Rolfes R (2016) Identification of genes in Candida glabrata Conferring altered responses to caspofungin, a cell wall synthesis inhibitor. G3 (Bethesda) 6:2893–907

    Google Scholar 

  • Saijo T, Miyazaki T, Izumikawa K, et al (2010) Skn7p is involved in oxidative stress response and virulence of candida glabrata. Mycopathologia. https://doi.org/10.1007/s11046-009-9233-5

  • Salazar SB, Wang C, Münsterkötter M, Okamoto M, Takahashi-Nakaguchi A, Chibana H, Lopes MM, Güldener U, Butler G, Mira NP (2018) Comparative genomic and transcriptomic analyses unveil novel features of azole resistance and adaptation to the human host in Candida glabrata. FEMS Yeast Res. https://doi.org/10.1093/femsyr/fox079

  • Sanglard D (2016) Emerging threats in antifungal-resistant fungal pathogens. Front Med 3:11

    Article  Google Scholar 

  • Sanglard D, Ischer F, Calabrese D, Majcherczyk PA, Bille J (1999) The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob Agents Chemother 43:2753–2765

    Article  CAS  Google Scholar 

  • Sanglard D, Ischer F, Bille J (2001) Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata. Antimicrob Agents Chemother 45:1174–1183

    Article  CAS  Google Scholar 

  • Sanguinetti M, Posteraro B, Fiori B, Ranno S, Torelli R, Fadda G (2005) Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance. Antimicrob Agents Chemother 49:668–679

    Article  CAS  Google Scholar 

  • Santos R, Buisson N, Knight SAB, Dancis A, Camadro JM, Lesuisse E (2004) Candida albicans lacking the frataxin homologue: a relevant yeast model for studying the role of frataxin. Mol Microbiol. https://doi.org/10.1111/j.1365-2958.2004.04281.x

  • Schaller M, Mailhammer R, Grassl G, Sander CA, Hube B, Korting HC (2002) Infection of human oral epithelia with Candida species induces cytokine expression correlated to the degree of virulence. J Invest Dermatol. https://doi.org/10.1046/j.1523-1747.2002.01699.x

  • Schmidt P, Walker J, Selway L, Stead D, Yin Z, Enjalbert B, Weig M, Brown AJP (2008) Proteomic analysis of the pH response in the fungal pathogen Candida glabrata. Proteomics. https://doi.org/10.1002/pmic.200700845

  • Schneider M V., Orchard S (2011) Omics technologies, data and bioinformatics principles. In: Methods in molecular biology, pp 3–30

    Google Scholar 

  • Schwarzmüller T, Ma B, Hiller E et al (2014) systematic phenotyping of a large-scale Candida glabrata deletion collection reveals novel antifungal tolerance genes. PLoS Pathog 10:e1004211

    Article  Google Scholar 

  • Seider K, Brunke S, Schild L et al (2011) The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation. J Immunol 187:3072–3086

    Article  CAS  Google Scholar 

  • Seider K, Gerwien F, Kasper L et al (2014) Immune evasion, stress resistance, and efficient nutrient acquisition are crucial for intracellular survival of Candida glabrata within macrophages. Eukaryot Cell. https://doi.org/10.1128/ec.00262-13

  • Semchyshyn HM, Abrat OB, Miedzobrodzki J, Inoue Y, Lushchak VI (2011) Acetate but not propionate induces oxidative stress in bakers’ yeast Saccharomyces cerevisiae. Redox Rep. https://doi.org/10.1179/174329211x12968219310954

  • Shapiro RS, Robbins N, Cowen LE (2011) Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 75:213–267

    Article  CAS  Google Scholar 

  • Sheehan DJ, Hitchcock CA, Sibley CM (1999) Current and emerging azole antifungal agents. Clin Microbiol Rev 12:40–79

    Article  CAS  Google Scholar 

  • Shen Y, Zhang L, Jia X, Zhang Y, Lu H (2015) Differentially expressed proteins in fluconazole-susceptible and fluconazole-resistant isolates of Candida glabrata. Drug Discov Ther 9:191–196

    Article  CAS  Google Scholar 

  • Sherwood PW, Carlson M (1999) Efficient export of the glucose transporter Hxt1p from the endoplasmic reticulum requires Gsf2p. Proc Natl Acad Sci 96:7415–7420

    Article  CAS  Google Scholar 

  • Shingu-Vazquez M, Traven A (2011) Mitochondria and fungal pathogenesis: drug tolerance, virulence, and potential for antifungal therapy. Eukaryot Cell 10:1376–1383

    Article  CAS  Google Scholar 

  • Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J (2012) Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev 36:288–305

    Article  CAS  Google Scholar 

  • Singh SD, Robbins N, Zaas AK, Schell WA, Perfect JR, Cowen LE (2009) Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin. PLoS Pathog 5:e1000532

    Article  Google Scholar 

  • Singh RP, Prasad HK, Sinha I, Agarwal N, Natarajan K (2011) Cap2-HAP complex is a critical transcriptional regulator that has dual but contrasting roles in regulation of iron homeostasis in Candida albicans. J Biol Chem. https://doi.org/10.1074/jbc.m111.233569

  • Singh-Babak SD, Babak T, Diezmann S, Hill JA, Xie JL, Chen Y-L, Poutanen SM, Rennie RP, Heitman J, Cowen LE (2012) global analysis of the evolution and mechanism of echinocandin resistance in Candida glabrata. PLoS Pathog 8:e1002718

    Article  CAS  Google Scholar 

  • Srivastava VK, Suneetha KJ, Kaur R (2015) The mitogen-activated protein kinase CgHog1 is required for iron homeostasis, adherence and virulence in Candida glabrata. FEBS J. https://doi.org/10.1111/febs.13264

  • Stevens DA, Ichinomiya M, Koshi Y, Horiuchi H (2006) Escape of Candida from caspofungin inhibition at concentrations above the MIC (paradoxical effect) accomplished by increased cell wall chitin; evidence for -1,6-glucan synthesis inhibition by caspofungin. Antimicrob Agents Chemother 50:3160–3161

    Article  CAS  Google Scholar 

  • Sun L, Liao K, Hang C (2018) Caffeic acid phenethyl ester synergistically enhances the antifungal activity of fluconazole against resistant Candida albicans. Phytomedicine 40:55–58

    Article  CAS  Google Scholar 

  • Swanson JA (2008) Shaping cups into phagosomes and macropinosomes. Nat Rev Mol Cell Biol. https://doi.org/10.1038/nrm2447

  • Till A, Lakhani R, Burnett SF, Subramani S (2012) Pexophagy: The selective degradation of peroxisomes. Int J Cell Biol. https://doi.org/10.1155/2012/512721

  • Torelli R, Posteraro B, Ferrari S, La Sorda M, Fadda G, Sanglard D, Sanguinetti M (2008) The ATP-binding cassette transporter–encoding gene CgSNQ2 is contributing to the CgPDR1-dependent azole resistance of Candida glabrata. Mol Microbiol 68:186–201

    Article  CAS  Google Scholar 

  • Tsai HF, Bard M, Izumikawa K, Krol AA, Sturm AM, Culbertson NT, Pierson CA, Bennett JE (2004) Candida glabrata erg1 mutant with increased sensitivity to azoles and to low oxygen tension. Antimicrob Agents Chemother. https://doi.org/10.1128/aac.48.7.2483-2489.2004

  • Tsai H-F, Sammons LR, Zhang X, Suffis SD, Su Q, Myers TG, Marr KA, Bennett JE (2010) Microarray and molecular analyses of the azole resistance mechanism in Candida glabrata oropharyngeal isolates. Antimicrob Agents Chemother 54:3308–3317

    Article  CAS  Google Scholar 

  • Uwamahoro N, Verma-Gaur J, Shen HH et al (2014) The pathogen Candida albicans hijacks pyroptosis for escape from macrophages. MBio. https://doi.org/10.1128/mbio.00003-14

  • Vallabhaneni S, Cleveland AA, Farley MM, Harrison LH, Schaffner W, Beldavs ZG, Derado G, Pham CD, Lockhart SR, Smith RM (2015) Epidemiology and risk factors for echinocandin nonsusceptible Candida glabrata bloodstream infections: data from a large multisite population-based candidemia surveillance program, 2008–2014. In: Open forum infectious diseases, vol 2

    Google Scholar 

  • vanden Bossche H, Marichal P, Odds FC, Le Jeune L, Coene MC (1992) Characterization of an azole-resistant Candida glabrata isolate. Antimicrob Agents Chemother 36:2602–2610

    Google Scholar 

  • Vandeputte P, Tronchin G, Bergès T, Hennequin C, Chabasse D, Bouchara J-P (2007) Reduced susceptibility to polyenes associated with a missense mutation in the ERG6 gene in a clinical isolate of Candida glabrata with pseudohyphal growth. Antimicrob Agents Chemother 51:982–990

    Article  CAS  Google Scholar 

  • Vandeputte P, Tronchin G, Larcher G, Ernoult E, Bergès T, Chabasse D, Bouchara J-P (2008) A nonsense mutation in the ERG6 gene leads to reduced susceptibility to polyenes in a clinical isolate of Candida glabrata. Antimicrob Agents Chemother 52:3701–3709

    Article  CAS  Google Scholar 

  • Vandeputte P, Pineau L, Larcher G, Noel T, Brèthes D, Chabasse D, Bouchara J-P (2011) Molecular mechanisms of resistance to 5-fluorocytosine in laboratory mutants of Candida glabrata. Mycopathologia 171:11–21

    Article  CAS  Google Scholar 

  • Vermitsky J-P, Edlind TD (2004) Azole resistance in Candida glabrata: coordinate upregulation of multidrug transporters and evidence for a Pdr1-like transcription factor. Antimicrob Agents Chemother 48:3773–3781

    Article  CAS  Google Scholar 

  • Vermitsky J-P, Earhart KD, Smith WL, Homayouni R, Edlind TD, Rogers PD (2006) Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies. Mol Microbiol 61:704–722

    Article  CAS  Google Scholar 

  • Vieira OV, Botelho RJ, Grinstein S (2002) Phagosome maturation: aging gracefully. Biochem J. https://doi.org/10.1042/bj20020691

  • Walker LA, Munro CA, De Bruijn I, Lenardon MD, McKinnon A, Gow NAR (2008) Stimulation of chitin synthesis rescues Candida albicans from echinocandins. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1000040

  • Wellington M, Koselny K, Sutterwala FS, Krysan DJ (2014) Candida albicans triggers NLRP3-mediated pyroptosis in macrophages. Eukaryot Cell. https://doi.org/10.1128/ec.00336-13

  • Whaley SG, Rogers PD (2016) Azole resistance in Candida glabrata. Curr Infect Dis Rep. https://doi.org/10.1007/s11908-016-0554-5

  • Whaley SG, Caudle KE, Vermitsky J-P, Chadwick SG, Toner G, Barker KS, Gygax SE, Rogers PD (2014) UPC2A is required for high-level azole antifungal resistance in Candida glabrata. Antimicrob Agents Chemother 58:4543–4554

    Article  Google Scholar 

  • Wiederhold N (2017) Antifungal resistance: current trends and future strategies to combat. Infect Drug Resist 10:249–259

    Article  CAS  Google Scholar 

  • Wu J, Chen X, Cai L, Tang L, Liu L (2015) Transcription factors Asg1p and Hal9p regulate pH homeostasis in candida glabrata. Front Microbiol. https://doi.org/10.3389/fmicb.2015.00843

  • Yan JY, Nie XL, Tao QM, Zhan SY, Zhang Y De (2013) Ketoconazole associated hepatotoxicity: a systematic review and meta-analysis. Biomed Environ Sci 26:605–610

    PubMed  Google Scholar 

  • Zhao C, Huang T, Chen W, Deng Z (2010) Enhancement of the diversity of polyoxins by a thymine-7-hydroxylase homolog outside the polyoxin biosynthesis gene cluster. Appl Environ Microbiol 76:7343–7347

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Cacho Teixeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pais, P., Galocha, M., Teixeira, M.C. (2019). Genome-Wide Response to Drugs and Stress in the Pathogenic Yeast Candida glabrata. In: Sá-Correia, I. (eds) Yeasts in Biotechnology and Human Health. Progress in Molecular and Subcellular Biology, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-030-13035-0_7

Download citation

Publish with us

Policies and ethics