Skip to main content

Enzyme-Mediated Enhanced Biogas Yield

  • Chapter
  • First Online:
Improving Biogas Production

Abstract

Enzymes are biocatalysts present in all living cells and have main function to perform the processes of breaking down complex nutrients into simple nutrients for cellular assimilation. Enzymatic catalysis has advantages over chemical catalysis due to high enzymatic specificity and moderate reaction conditions. Of great industrial interest, the enzymes can be applied in increasing the yield of compound production or in the degradation of unwanted by-products and these characteristics make the knowledge of enzymatic catalysis in biogas production extremely relevant, since the traditional method of biogas production is based on the biodegradation of organic matter by anaerobic digestion, which is produced by the action of a variety of microorganisms and enzymes. In the production of biogas, enzyme-mediated degradation may be the key to a higher quality final product, acting in the steps of hydrolysis, acidogenesis, acetogenesis and methanogenesis, and in the identification of by-products of enzymatic catalysis that may inhibit the process. In this context, the present chapter will be addressed: (i) introduction of enzymes in anaerobic biodigestion; (ii) enzymes as a mediator of biogas yield; (iii) inhibition of biogas production and biodegradability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelsalam E, Samer M, Attia YA, Abdel-Hadi MA, Hassan HE, Badr Y (2017) Effects of Co and Ni nanoparticles on biogas and methane production from anaerobic digestion of slurry. Energy Convers Manag 141:108–119

    Article  Google Scholar 

  • Abdel-Shafy HI, Mansour MSM (2014) Biogas production as affected by heavy metals in the anaerobic digestion of sludge. Egypt J Petrol 23:409–417

    Article  Google Scholar 

  • Abedi D, Zhang L, Pyne M, Perry Chou C (2011) Enzyme biocatalysis, chap 1. In: Comprehensive biotechnology, pp 15–24

    Chapter  Google Scholar 

  • Achinas S, Achinas V, Jan G, Euverinka W (2017) A technological overview of biogas production from biowaste. Engineering 3:299–307

    Article  Google Scholar 

  • Ács N, Bagi Z, Rákhely G, Minárovics J, Nagy K, Kovács KL (2015) Bioaugmentation of biogas production by a hydrogen-producing bacterium. Biores Technol 186:286–293

    Article  Google Scholar 

  • Ahmadi N, Darani KK, Mortazavian AM (2017) An overview of biotechnological production of propionic acid: from upstream to downstream processes. Eletron J Biotechnol 28:67–75

    Article  Google Scholar 

  • Al Seadi T, Rutz D, Prassl H, Köttner M, Finsterwalder T, Volk S, Janssen R (2008) Biogas handbook. University of Southern Denmark Esbjerg, Niels Bohrs

    Google Scholar 

  • Amha YM, Anwar MZ, Brower A, Jacobsen CS, Stadler LB, Webster TM, Smith AL (2018) Inhibition of anaerobic digestion processes: application of molecular tools. Biores Technol 247:999–1014

    Article  Google Scholar 

  • Aronson EL, Allison SD, Helliker BR (2013) Environmental impacts on the diversity of methane-cycling microbes and their resultant function. Front Microbiol 4

    Google Scholar 

  • Azman S, Khadem AF, Van Lier JB, Zeeman G, Plugge CM (2015) Presence and role of anaerobic hydrolytic microbes in conversion of lignocellulosic biomass for biogas production. Crit Rev Environ Sci Technol 45:2523–2564

    Article  Google Scholar 

  • Azman S, Khadem AF, Plugge CM, Stams AJ, Bec S, Zeeman G (2017) Effect of humic acid on anaerobic digestion of cellulose and xylan in completely stirred tank reactors: inhibitory effect, mitigation of the inhibition and the dynamics of the microbial communities. Appl Microbiol Biotechnol 101:889–901

    Article  Google Scholar 

  • Baserba MG, Angelidaki I, Karakashev D (2012) Effect of continuous oleate addition on microbial communities involved in anaerobic digestion process. Biores Technol 106:74–81

    Article  Google Scholar 

  • Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WTM, Siegrist H, Vavilin VA (2002) The IWA anaerobic digestion model no. 1 (ADM1). Water Sci Technol 45(10):65–73

    Article  Google Scholar 

  • Bensaid S, Ruggeri B, Saracco G (2015) Development of a photosynthetic microbial electrochemical cell (PMEC) reactor coupled with dark fermentation of organic wastes: medium term perspectives. Energies 8:399–429

    Article  Google Scholar 

  • Bharathiraja B, Sudhargarsana T, Jayamuthunagai J, Praveenkumar R, Chozhavendhan S, Iyyappab J (2018) Biogas production—a review on composition, fuel properties, feed stock and principles of anaerobic digestion. Renew Sustain Energy Rev 90:570–582

    Article  Google Scholar 

  • Brémond U, Buyer R, Steyer J, Bernet N, Carrere H (2018) Biological pretreatments of biomass for improving biogas production: an overview from lab scale to full-scale. Renew Sustain Energy Rev 90:583–604

    Article  Google Scholar 

  • Buyukkamaci N, Filibeli A (2004) Volatile fatty acid formation in an anaerobic hybrid reactor. Process Biochem 39:1491–1494

    Article  Google Scholar 

  • Carlier JP, Marchandin H, Jumas-Bilak E, Lorin V, Henry C, Carrièrre C, Jean-Pierre H (2002) Anaeroglobus geminatus gen. nov., sp. nov., a novel member of the Family Veillonellaceae. Int J Syst Evol Microbiol 52:983–986

    Google Scholar 

  • Cazier EA, Trably E, Steyer JP, Escudié R (2015) Biomass hydrolysis inhibition at high hydrogen partial pressure in solid-state anaerobic digestion. Biores Technol 190:106–113

    Article  Google Scholar 

  • Chaganti SR, Kim D-H, Lalman JA (2011) Flux balance analysis of mixed anaerobic microbial communities: effects of linoleic acid (LA) and pH on biohydrogen production. Int J Hydrogen Energy 36:14141–14152

    Article  Google Scholar 

  • Chen X, Sun Y, Xiu Z, Li X, Zhang D (2006) Stoichiometric analysis of biological hydrogen production by fermentative bacteria. Int J Hydrogen Energy 31:539–549

    Article  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Biores Technol 99:4044–4064

    Article  Google Scholar 

  • Chen Y, Luo J, Yan Y, Feng L (2013) Enhanced production of short-chain fatty acid by co-fermentation of waste activated sludge and kitchen waste under alkaline conditions and its application to microbial fuel cells. Appl Energy 102:1197–1204

    Article  Google Scholar 

  • Chen JL, Ortiz R, Steele TWJ, Stuckey DC (2014) Toxicants inhibiting anaerobic digestion: a review. Biotechnol Adv 32:1523–1534

    Article  Google Scholar 

  • Chen C, Guo W, Ngo HH, Lee D, Tung K, Jin P, Wang J, Wu Y (2016) Challenges in biogas production from anaerobic membrane bioreactors. Renewable Energy 98:120–134

    Article  Google Scholar 

  • Choi J, Han S, Kim H (2015) Industrial applications of enzyme biocatalysis: current status and future aspects. Biotechnol Adv 33(7):1443–1454

    Article  Google Scholar 

  • Chojnacka A, Szczęsny P, Błaszczyk MK, Zielenkiewicz U, Detman A, Salamon A, Sikora A (2015) Noteworthy facts about a methane-producing microbial community processing acidic effluent from sugar beet molasses fermentation. PLoS ONE 10

    Google Scholar 

  • Chotwattanasak J, Puetpaiboon U (2011) Full scale anaerobic digester for treating palm oil mill wastewater. J Sustain Energy Environ 2:133–136

    Google Scholar 

  • Christy PM, Gopinath LR, Divya D (2014) A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renew Sustain Energy Rev 34:167–173

    Article  Google Scholar 

  • Collins MD, Falsen E, Akervall E, Sooden B, Alvarez A (1998) Corynebacterium kroppenstedtii sp. nov., a novel Corynebacterium that does not contain mycolic acids. Int J Syst Bacteriol 48:1449–1454

    Article  Google Scholar 

  • Cooney M, Maynard N, Cannizzaro C, Benemann J (2007) Two-phase anaerobic digestion for production of hydrogen-methane mixtures. Biores Technol 98:2641–2651

    Article  Google Scholar 

  • Coral J, Karp SG, Vandenberghe LPS, Parada JL, Pandey A, Soccol CR (2008) Batch fermentation model of propionic acid production by propionibacterium acidipropionici in different carbon sources. Appl Biochem Biotechnol 151:333–341

    Article  Google Scholar 

  • De Bok FAM, Stams AJM, Dijkema C, Boone DR (2001) Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei. Appl Environ Microbiol 67(4):1800–1804

    Article  Google Scholar 

  • Dereli RK, Ersahin ME, Ozgun H, Ozturk I, Jeison D, Van der Zee FP, Van Lier JB (2012) Potentials of anaerobic membrane bioreactors to overcome treatment limitations induced by industrial wastewaters. Biores Technol 122:160–170

    Article  Google Scholar 

  • Desbois AP, Smith VJ (2010) Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 85:1629–1642

    Article  Google Scholar 

  • Dong X, Plugge CM, Stams AJM (1994) Anaerobic degradation of propionate by a mesophilic acetogenic bacterium in coculture and triculture with different methanogens. Appl Environ Microbiol 60:2834–2838

    Google Scholar 

  • FAO Agricultural Services Bulletin—128 (1997) Methane production. In: Renewable biological systems for alternative sustainable energy production. ISBN 92-5-104059-1

    Google Scholar 

  • Ferry JG (2011) Acetate kinase and phosphotransacetylase. In: Methods in enzymology, vol 494

    Chapter  Google Scholar 

  • Fotidis IA, Karakashev D, Angelidaki I (2014) The dominant acetate degradation pathway/methanogenic composition in full-scale anaerobic digesters operating under different ammonia levels. Int J Environ Sci Technol 11:2087–2094

    Google Scholar 

  • Fournier GP, Gogarten JP (2007) Evolution of acetoclastic methanogenesis in Methanosarcina via horizontal gene transfer from cellulolytic Clostridia. J Bacteriol 190(3):1124–1127

    Article  Google Scholar 

  • Garvie EI (1980) Bacterial lactate dehydrogenases. Microbiol Rev 44:106–139

    Google Scholar 

  • Gerardi MH (2003) The microbiology of anaerobic digesters. In: Wastewater microbiology series. Wiley, 177 p

    Google Scholar 

  • Girbal L, Soucaille P (1994) Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool. J Bacteriol 176:6433–6438

    Article  Google Scholar 

  • Girbal L, Vasconcelos I, Saint-Amans S, Soucaille P (1995) How neutral red modified carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH. FEMS Microbiol Rev 16:151–162

    Article  Google Scholar 

  • Gonzalo G, Colpa DI, Habib DI, Fraaije MW (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119

    Article  Google Scholar 

  • Graham DE, White RH (2001) Elucidation of methanogenic coenzyme biosyntheses: from spectroscopy to genomics. Nat Prod Rep 19(2):133–147

    Article  MathSciNet  Google Scholar 

  • Grochowski LL, White RH (2010) Biosynthesis of the methanogenic coenzymes. In: Comprehensive natural products II, pp 711–748

    Chapter  Google Scholar 

  • Guedon E, Desvaux M, Petitdemange H (2002) Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl Environ Microbiol 68:53–58

    Article  Google Scholar 

  • Gupta KK, Aneja KR, Rana D (2016) Current status of cow dung as a bioresource for sustainable development. Biores Bioprocess 28:1–11

    Google Scholar 

  • Halpern J (1985) Mechanisms of coenzyme B12-dependent rearrangements. Science 227:869–875

    Article  Google Scholar 

  • Hoskins J, Alborn WE Jr, Arnold J, Blaszczak LC, Burgett S, DeHoff SB, Strem ST, Fritz L, Fu DJ, Fuller W, Geringer C, Gilmour R, Glass JS, Khoja H, Kraft AR, Lagace RE, LeBlanc DJ, Lee LN, Lefkowitz EJ, Lu J, Matshushima P, McAhren SM, McHenney M, McLeaster K, Mundy CW, Nicas TI, Norris FH, O’Gara M, Peery RB, Robertson GT, Rockey P, Sun PM, Winkler ME, Yang Y, Young-Bellido M, Zhao G, Zook CA, Baltz RH, Jaskunas SR, Rosteck PR Jr, Skatrud PL, Glass JI (2001) Genome of the bacterium Streptococcus pneumoniae strain R6. J Bacteriol 183:5709–5717

    Article  Google Scholar 

  • Houwen FP, Plokker J, Stams AJM, Zehder AJB (1990) Enzymatic evidence for involvement of the methyl-malonyl-CoA pathway in propionate oxidation by Syntrophobacter wolinii. Arch Microbiol 155:52–55

    Article  Google Scholar 

  • Huang KX, Huang S, Rudolph FB, Bennett GN (2000) Identification and characterization of a second butyrate kinase from Clostridium acetobutylicum ATCC 824. J Mol Microbiol Biotechnol 2:33–38

    Google Scholar 

  • Hussain AA, Abdel-Salam MS, Abo-Ghalia HH, Hegazy WK, Hafez SS (2017) Optimization and molecular identification of novel cellulose degrading bacteria isolated from Egyptian environment. J Genet Eng Biotechnol 15:77–85

    Article  Google Scholar 

  • Hwang S, Lee Y, Yang K (2001) Maximization of acetic acid production in partial acidogenesis of swine wastewater. Biotechnol Bioeng 75:521–529

    Article  Google Scholar 

  • Iannotti EL, Fischer JR, Sievers DM (1982) Characterization of bacteria from a swine manure digester. Appl Environ Microbiol 43:136–143

    Google Scholar 

  • Imachi H, Sakai S, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y (2000) Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge. Appl Environ Microbiol 66:3608–3615

    Article  Google Scholar 

  • Imachi H, Sakai S, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y (2002) Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 52:1729–1735

    Google Scholar 

  • Imachi H, Sakai S, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y (2008) Pelotomaculum propionicicum sp. nov., an anaerobic, mesophilic, obligately syntrophic, propionate-oxidizing bacterium. Int J Syst Evol Microbiol 57:1487–1492

    Article  Google Scholar 

  • Jackson BE, Bhupathiraju VK, Tanner RS, Woese CR, McInerney MJ (1999) Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms. Arch Microbiol 171:107–114

    Article  Google Scholar 

  • Jha AK, Li J, Zhang L (2011) Research advances in dry anaerobic digestion process of solid organic wastes. Afr J Biotech 10(65):14242–14253

    Article  Google Scholar 

  • Kaji M, Taniguchi Y, Matsushita O, Katayama S, Miyata S, Morita S, Okabe A (1999) The hydA gene encoding the H2 evolving hydrogenase of Clostridium perfringens: molecular characterization and expression of the gene. FEMS Microbiol Lett 181:329–336

    Article  Google Scholar 

  • Kanai M, Ferre V, Wakahara S, Yamamoto T, Moro M (2010) A novel combination of methane fermentation and MBR—Kubota submerged anaerobic membrane bioreactor process. Desalination 250:964–967

    Article  Google Scholar 

  • Kandylis P, Bekatorou A, Pissaridi K, Lappa K, Dima A, Kanellaki M, Koutinas AA (2016) Acidogenesis of cellulosic hydrolysates for new generation biofuels. Biomass Bioenerg 91:210–216

    Article  Google Scholar 

  • Kolbl S, Forte-Tavčer P, Stres B (2017) Potential for valorization of dehydrated paper pulp sludge for biogas production: addition of selected hydrolytic enzymes in semi-continuous anaerobic digestion assays. Energy 126:326–334

    Article  Google Scholar 

  • Kosaka T, Uchiyama T, Ishii S, Enoki M, Imachi H, Kamagata Y, Ohashi A, Harada H, Ikenaga H, Watanabe K (2006) Reconstruction and regulation of the central catabolic pathway in the thermophilic propionate-oxidizing syntroph Pelotomaculum thermopropionicum. J Bacteriol 188(1):202–210

    Article  Google Scholar 

  • Lee HS, Salerno MB, Rittmann BE (2008) Thermodynamic evaluation on H2 production in glucose fermentation. Environ Sci Technol 42:2401–2407

    Article  Google Scholar 

  • Leigh JA (2011) Growth of methanogens under defined hydrogen conditions. In: Methods in enzymology, vol 494

    Chapter  Google Scholar 

  • Li Y (2013) An integrated study of microbial community in anaerobic digestion systems. The Ohio State University, Graduate Program in Environmental Science, 208 p

    Google Scholar 

  • Li J, Sun K, He J, Chen Q (2011) Using an amylase pretreatment of pig manure to enhance biogas production. National Engineering Center of Solid Waste Resources Recovery in Kunming University of Science and Technology. https://doi.org/10.1109/appeec.2011.5748924

  • Li L, He Q, Ma Y, Wang X, Peng X (2015a) Dynamics of microbial community in a mesophilic anaerobic digester treating food waste: relationship between community structure and process stability. Biores Technol 189:113–120

    Article  Google Scholar 

  • Li X, Chen Y, Zhao S, Chen H, Zheng X, Luo JY, Liu Y (2015b) Efficient production of optically pure l-lactic acid from food waste at ambient temperature by regulating key enzyme activity. Water Res 70:148–157

    Article  Google Scholar 

  • Lim JT, Ge T, Tong YW (2018) Monitoring of microbial communities in anaerobic digestion sludge for biogas optimization. Waste Manag 71:334–341

    Article  Google Scholar 

  • Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–189

    Article  Google Scholar 

  • Liu Y, Balkwill DL, Aldrich HC, Drake GR, Boone DR (1999) Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Int J Syst Bacteriol 49:545–556

    Article  Google Scholar 

  • Liu D, Liu D, Zeng RJ, Angelidaki I (2006) Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res 40:2230–2236

    Article  Google Scholar 

  • Liu C, Yang J, Zhang S, Guo J, Li Z (2008) Bacterial diversity comparison of anaerobic sludge from full-scale wastewater treatment bioreactors. J Biotechnol 136:S610–S630

    Article  Google Scholar 

  • Ma J, Zhao QB, Laurens LLM, Jarvis EE, Nagle NJ, Chen S, Frear CS (2015) Mechanism, kinetics and microbiology of inhibition caused by long-chain fatty acids in anaerobic digestion of algal biomass. Biotechnol Biofuels 8:141

    Article  Google Scholar 

  • Mathai PP, Zitomer DH, Maki JS (2015) Quantitative detection of syntrophic fatty acid-degrading bacterial communities in methanogenic environments. Microbiology 161(6):1189–1197

    Article  Google Scholar 

  • McInerney MJ, Wofford NQ (1992) Enzymes involved in crotonate metabolism in Syntrophomonas wolfei. Arch Microbiol 158:344–349

    Article  Google Scholar 

  • McInerney MJ, Rohlin L, Mouttaki H, Kim U, Krupp RS, Rios-Hernandez L, Sieber JR, Struchtemeyer CG, Bhattacharyya A, Campbell JW, Gunsalus RP (2007) The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth. PNAS Microbiol 104(18):7600–7605

    Article  Google Scholar 

  • Müller N, Worm P, Schink B, Stams AJ, Plugge CM (2010) Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms. Environ Microbiol Rep 2:489–499

    Article  Google Scholar 

  • Murray DW, Khan WA, van den Berg L (1982) Clostridium saccharolyticurn sp. nov., a saccharolytic species from sewage sludge. Int J Syst Bacteriol 32:132–135

    Article  Google Scholar 

  • Nodar R, Acea MJ, Carballas T (1992) Poultry slurry microbial population: composition and evolution during storage. Biores Technol 40:29–34

    Article  Google Scholar 

  • Otín CL, Bond JS (2008) Proteases: multifunctional enzymes in life and disease. J Biol Chem 283:30433–30437

    Article  Google Scholar 

  • Pereira MA, Pires OC, Mota M, Alves MM (2005) Anaerobic biodegradation of oleic and palmitic acids: evidence of mass transfer limitations caused by long chain fatty acid accumulation onto the anaerobic sludge. Biotechnol Bioeng 92:15–23

    Article  Google Scholar 

  • Plugge CM, Dijkema C, Stams AJM (1993) Acetyl-CoA cleavage pathway in a syntrophic propionate oxidizing bacterium growing on fumarate in the absence of methanogens. FEMS Microbiol Lett 110:71–76

    Article  Google Scholar 

  • Prasertsan P, Khangkhachit W, Duangsuwan W, Mamimin C, O-Thong S (2017) Direct hydrolysis of palm oil mill effluent by xylanase enzyme to enhance biogas production using two-steps thermophilic fermentation under non-sterile condition. Int J Hydrogen Energy 42:27759–27766

    Article  Google Scholar 

  • Ren N, Wang B, Huang JC (1997) Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnol Bioeng 54:428–433

    Article  Google Scholar 

  • Rincón B, Portillo MC, González JM, Borja R (2013) Microbial community dynamics in the two-stage anaerobic digestion process of two-phase olive mill residue. Int J Environ Sci Technol 10:635–644

    Article  Google Scholar 

  • Rivera-Salvador V, López-Cruz IL, Espinosa-Solares T, Aranda-Barradas JS, Huber DH, Sharma D, Toledo JU (2014) Application of anaerobic digestion model no. 1 to describe the syntrophic acetate oxidation of poultry litter in thermophilic anaerobic digestion. Biores Technol 167:495–502

    Article  Google Scholar 

  • Ruiz-Sánchez J, Campanaro S, Guivernau M, Fernández B, Prenafeta-Boldú FX (2018) Effect of ammonia on the active microbiome and metagenome from stable full-scale digesters. Biores Technol 250:513–522

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Sanchez S, Demain AL (2017) Useful microbial enzymes—an introduction, chap 1. In: Biotechnology of microbial enzymes, pp 1–11

    Google Scholar 

  • Sarmiento FB, Leigh JA, Whitman WB (2011) Genetic systems for hydrogenotrophic methanogens. In: Methods in enzymology, vol 494

    Chapter  Google Scholar 

  • Sauer U, Eikmanns BJ (2005) The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 29(4):765–794

    Article  Google Scholar 

  • Seedorf H, Fricke WF, Veith B, Brüggemann H, Liesegang H, Strittmatter A, Miethke M, Buckel W, Hinderberger J, Li F, Hagemeier C, Thauer RK, Gottschalk G (2008) The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc Nat Acad Sci USA 105:2128–2133

    Article  Google Scholar 

  • Selling R, Hakansson T, Bjornsson L (2008) Two-stage anaerobic digestion enables heavy metal removal. Water Sci Technol 57:553–558

    Article  Google Scholar 

  • Seon JY, Lee T, Lee SC, Pham HD, Woo HC, Song M (2014) Bacterial community structure in maximum volatile fatty acids production from alginate in acidogenesis. Biores Technol 157:22–27

    Article  Google Scholar 

  • Shah FA, Mahmood Q, Maroof Shah M, Pervez A, Ahmad Asad S (2014) Microbial ecology of anaerobic digesters: the key players of anaerobiosis. Sci World J 2014:1–21

    Google Scholar 

  • Sieber JR, Sims DR, Han C, Kim E, Lykidis A, Lapidus AL, McDonnald E, Rohlin L, Culley DE, Gunsalus R, McInerney MJ (2010) The genome of Syntrophomonas wolfei: new insights into syntrophic metabolism and biohydrogen production. Environ Microbiol 12(8):2289–2301

    Google Scholar 

  • Sillers R, Chow A, Tracy B, Papoutsakis ET (2008) Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance. Metab Eng 10:321–332

    Article  Google Scholar 

  • Silva SA, Cavaleiro AJ, Pereira MA, Stams AJM, Alves MM, Sousa DZ (2014) Long-term acclimation of anaerobic sludges for high-rate methanogenesis from LCFA. Biomass Bioenergy 67:297–303

    Article  Google Scholar 

  • Silva FMS, Mahler CF, Oliveira LB, Bassin JP (2018) Hydrogen and methane production in a two-stage anaerobic digestion system by co-digestion of food waste, sewage sludge and glycerol. Waste Manag 76:339–349

    Article  Google Scholar 

  • Silvestre G, Rodríguez-Abalde A, Fernández B, Flotats X, Bonmatí A (2011) Biomass adaptation over anaerobic co-digestion of sewage sludge and trapped grease waste. Biores Technol 102:6830–6836

    Article  Google Scholar 

  • Speece RE, Boonyakitsombut S, Kim M, Azbar N, Ursillo P (2006) Overview of anaero-bic treatment: thermophilic and propionate implications. Water Environ Res 78(5):460–473

    Article  Google Scholar 

  • Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7(8):568–577

    Article  Google Scholar 

  • Svensson BH, Dubourguier HC, Prensier G, Zehnder AJB (1992) Clostridium quinii sp. nov., a new saccharolytic anaerobic bacterium isolated from granular sludge. Arch Microbiol 157:97–103

    Google Scholar 

  • Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144:2377–2406

    Article  Google Scholar 

  • Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ, Hugenholtz P, Tyson GW (2016) Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol 1

    Google Scholar 

  • Vavilin VA, Rytov SV, Lokshina LY (1996) A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter. Biores Technol 56:229–237

    Article  Google Scholar 

  • Venkiteshwaran K, Bocher B, Maki J, Zitomer D (2015) Relating anaerobic digestion microbial community and process function. Int J Microbiol Insights 8:37–44

    Google Scholar 

  • Vital M, Howe AC, Tiedje JM (2014) Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio 5

    Google Scholar 

  • Vrieze J, Hennebel T, Verstraete W (2012) Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Biores Technol 112:1–9

    Article  Google Scholar 

  • Wang J, Wan W (2009) Factors influencing fermentative hydrogen production: a review. Int J Hydrogen Energy 34:799–811

    Article  Google Scholar 

  • Wang K, Yin J, Shen D, Li N (2014) Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH. Biores Technol 161:395–401

    Article  Google Scholar 

  • Wang P, Wang H, Qiu Y, Ren L, Jiang B (2018) Microbial characteristics in anaerobic digestion process of food waste for methane production—a review. Biores Technol 248:29–36

    Article  Google Scholar 

  • Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860

    Article  Google Scholar 

  • Wofford NQ, Beaty PS, McInerney MJ (1986) Preparation of cell-free extracts and the enzymes involved in fatty acid metabolism in Syntrophomonas wolfei. J Bacteriol 167:179–185

    Article  Google Scholar 

  • Wood HG, Ljungdahl L (1991) Autotrophic character of acetogenic bacteria. In: Variations in autotrophic life. Academic Press Books, pp. 201–250

    Google Scholar 

  • Xing J, Criddle C, Hickey R (1997) Effects of a long-term periodic substrate perturbation on an anaerobic community. Water Res J 31:2195–2204

    Article  Google Scholar 

  • Yatawara MDMDWMMK (2015) Generation of biogas from degradable organic wastes, lesson 32. In: Practical manual for GCE A/L biosystem technology teachers, pp. 227–236

    Google Scholar 

  • Yen HW, Li RJ, Ma TW (2011) The development process for a continuous acetone–butanol–ethanol (ABE) fermentation by immobilized Clostridium acetobutylicum. J Taiwan Inst Chem Eng 42:902–907

    Article  Google Scholar 

  • Yi J, Dong B, Xue Y, Li N, Gao P, Zhao Y, Dai L, Dai X (2014) Microbial community dynamics in batch high-solid anaerobic digestion of food waste under mesophilic conditions. J Microbiol Biotechnol 24:270–279

    Article  Google Scholar 

  • Yoo M, Croux C, Meynial-Salles I, Soucaille P (2017) Metabolic flexibility of a butyrate pathway mutant of Clostridium acetobutylicum. Metab Eng 40:138–147

    Article  Google Scholar 

  • Yue Z, Yu H, Wang Z (2007) Anaerobic digestion of cattail with rumen culture in the presence of heavy metals. Biores Technol 98:781–786

    Article  Google Scholar 

  • Zhang C, Su H, Baeyens J, Tan T (2014) Reviewing the anaerobic digestion of food waste for biogas production. Renew Sustain Energy Rev 38:383–392

    Article  Google Scholar 

  • Zhao H, Li J, Liu J, Lü Y, Wang X, Cui Z (2013) Microbial community dynamics during biogas slurry and cow manure compost. J Integr Agric 12:1087–1097

    Article  Google Scholar 

  • Zhou M, Yan B, Wong JWC, Zhang Y (2017) Enhanced volatile fatty acids production from anaerobic fermentation of food waste: a mini-review focusing on acidogenic metabolic pathways. Biores Technol 248:68–78

    Article  Google Scholar 

  • Zhu J (2000) A review of microbiology in swine manure odor control. Agr Ecosyst Environ 78:93–106

    Article  Google Scholar 

  • Zhu H, Parker W, Basnar R, Proracki A, Falletta P, Beland M, Seto P (2009) Buffer requirements for enhanced hydrogen production in acidogenic digestion of food wastes. Biores Technol 100:97–102

    Article  Google Scholar 

  • Zinder SH (1993) Physiological ecology of methanogens. In: Methanogenesis, pp. 128–206

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thamarys Scapini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scapini, T. et al. (2019). Enzyme-Mediated Enhanced Biogas Yield. In: Treichel, H., Fongaro, G. (eds) Improving Biogas Production. Biofuel and Biorefinery Technologies, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-10516-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10516-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10515-0

  • Online ISBN: 978-3-030-10516-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics