Skip to main content

A Comprehensive Review on Microbial Technology for Biogas Production

  • Chapter
  • First Online:
Bioenergy Research: Revisiting Latest Development

Abstract

Biogas, an alternative to fossil fuels, is a blend which consists predominantly of CH4 and CO2 used for transportation and collective heat as well as power (CHP) generation. The factors affecting biogas manufacture are characteristics of substrate (especially C/N and VSS/TSS ratios), concentration of substrate in feed, process temperature, retention time, working pressure, and pH of feed. Biogas is produced by anaerobic digestion, in which biopolymers are transformed to biogas in the nonappearance of O2. This digestion process is essentially anaerobic which contains four major steps. These are hydrolysis of polymer, acidogenesis, acetogenesis, as well as methanogenesis. Hydrolysis involves the breakdown of biopolymers to its monomers with the help of water. Acidogenesis involves the formation of acids, which are essentially volatile, from the monomers. Acetogenesis produces acetates and acetic acid from various volatile acids. Finally, acetates and acetic acid are converted to methane and carbon dioxide during methanogenesis. Anaerobic digestion takes place in the presence of co-culture containing hydrolytic, acidogenic, acetogenic, and methanogenic organisms. In this chapter, a comprehensive review on the development of hydrolytic, acidogenic, acetogenic, and methanogenic organisms for biogas production is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agustini CB, da Costa M, Gutterres M (2020) Tannery wastewater as nutrient supply in production of biogas from solid tannery wastes mixed through anaerobic co-digestion. Process Saf Environ Prot 135:38–45

    Article  CAS  Google Scholar 

  • Ali Shah F, Mahmood Q, Maroof Shah M, Pervez A, Ahmad Asad S (2014) Microbial ecology of anaerobic digesters: the key players of anaerobiosis. Sci World J 2014:183752

    Article  Google Scholar 

  • Babanova S, Carpenter K, Phadke S, Suzuki S, Ishii S, Phan T, Grossi-Soyster E, Flynn M, Hogan J, Bretschger O (2017) The effect of membrane type on the performance of microbial electrosynthesis cells for methane production. J Electrochem Soc 164:H3015–H3023

    Article  CAS  Google Scholar 

  • Banerjee S, Sirkar A (2012) Determination of kinetic parameters in anaerobic digestion process using distillery wastes–a mathematical approach. Int J Sci Res Publ 2(10):1–7

    Google Scholar 

  • Banerjee S, Biswas GK (2004) Studies on biomethanation of distillery wastes and its mathematical analysis. Chem Eng J 102(2):193–201

    Article  CAS  Google Scholar 

  • Blasco-Gómez R, Batlle-Vilanova P, Villano M, Balaguer M, Colprim J, Puig S (2017) On the edge of research and technological application: a critical review of electromethanogenesis. Int J Mol Sci 18:874

    Article  CAS  Google Scholar 

  • Botta LS, Delforno TP, Rabelo CABS, Silva EL, Varesche MBA (2020) Microbial community analyses by high-throughput sequencing of rumen microorganisms fermenting office paper in mesophilic and thermophilic lysimeters. Process Saf Environ Prot 136:182–193

    Article  CAS  Google Scholar 

  • Carpenter AW, Laughton SN, Wiesner MR (2015) Enhanced biogas production from nanoscale zero valent iron-amended anaerobic bioreactors. Environ Eng Sci 32:647–655

    Article  CAS  Google Scholar 

  • Choi H-J (2020) Influence of acidogenic fermented fish by-products with rice bran for sludge reduction and biogas recovery in anaerobic co-digestion. Environ Eng Res 26:190409

    Article  Google Scholar 

  • Cirne DG, Lehtomäki A, Björnsson L, Blackall LL (2007) Hydrolysis and microbial community analyses in two-stage anaerobic digestion of energy crops. J Appl Microbiol 103(3):516–527

    Article  CAS  Google Scholar 

  • Coelho MMH, Morais NWS, Pereira EL, Leitão RC, dos Santos AB (2020) Potential assessment and kinetic modeling of carboxylic acids production using dairy wastewater as substrate. Biochem Eng J 156:107502

    Article  CAS  Google Scholar 

  • Demirel B, Scherer P (2008) Production of methane from sugar beet silage without manure addition by a single-stage anaerobic digestion process. Biomass Bioenergy 32:203–209

    Article  CAS  Google Scholar 

  • Depraect OG, Muñoz R, van Lier JB, Rene ER, Diaz-Cruces VF, Becerril EL (2020) Three-stage process for tequila vinasse valorization through sequential lactate, biohydrogen and methane production. Bioresour Technol 307:123160

    Article  CAS  Google Scholar 

  • Dioha IJ, Ikeme CH, Nafi’u T, Soba NI, Yusuf MBS (2013) Effect of carbon to nitrogen ratio on biogas production. Int Res J Nat Sci 1(3):1–10

    Google Scholar 

  • Emerson CW (2008) Hydrogen energy: a study of the use of anaerobic digester gas to generate electricity utilizing stand-alone hydrogen fuel cells at wastewater treatment plants. Thesis, Rochester Institute of Technology. Accessed from https://scholarworks.rit.edu/cgi/viewcontent.cgi?article=1551&context=theses

    Google Scholar 

  • Enzmann F, Mayer F, Rother M, Holtmann D (2018) Methanogens: biochemical background and biotechnological applications. AMB Express 8(1):1–22

    Article  CAS  Google Scholar 

  • Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, Tyson GW (2015) Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350:434–438

    Article  CAS  Google Scholar 

  • Ganguly A, Banerjee S, Biswas GK (2006) Studies on biomethanation of kitchen wastes. Ind J Environ Protect 26(3):219

    CAS  Google Scholar 

  • Garcia J-L, Patel BK, Ollivier B (2000) Taxonomic, phylogenetic, and ecological diversity of methanogenic archaea. Anaerobe 6:205–226

    Article  CAS  Google Scholar 

  • Geppert F, Liu D, van Eerten-Jansen M, Weidner E, Buisman C, ter Heijne A (2016) Bioelectrochemical power-to-gas: state of the art and future perspectives. Trends Biotechnol 34:879–894

    Article  CAS  Google Scholar 

  • Ghosh P, Kumar M, Kapoor R, Kumar SS, Singh L, Vijay V, Vijay VK, Kumar V, Thakur IS (2020) Enhanced biogas production from municipal solid waste via co-digestion with sewage sludge and metabolic pathway analysis. Bioresour Technol 296:122275

    Article  CAS  Google Scholar 

  • Gieg LM, Duncan KE, Suflita JM (2008) Bioenergy production via microbial conversion of residual oil to natural gas. Appl Environ Microbiol 74:3022–3029

    Article  CAS  Google Scholar 

  • Gopinath LR, Christy PM, Mahesh K, Bhuvaneswari R, Divya D (2014) Identification and evaluation of effective bacterial consortia for efficient biogas production. IOSR J Environ Sci Toxicol Food Technol 8(3):80–86

    Article  CAS  Google Scholar 

  • Güllert S, Fischer MA, Turaev D, Noebauer B, Ilmberger N, Wemheuer B, Grundhoff A (2016) Deep metagenome and metatranscriptome analyses of microbial communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate hydrolysis strategies. Biotechnol Biofuels 9(1):121

    Article  CAS  Google Scholar 

  • Huang X, Liu X, Chen F, Wang Y, Li X, Wang D, Yang Q (2020) Clarithromycin affect methane production from anaerobic digestion of waste activated sludge. J Clean Prod 255:120321

    Article  CAS  Google Scholar 

  • Jiang Y, Su M, Li D (2014) Removal of sulfide and production of methane from carbon dioxide in microbial fuel cells–microbial electrolysis cell (MFCs– MEC) coupled system. Appl Biochem Biotechnol 172:2720–2731

    Article  CAS  Google Scholar 

  • Joshua OS, Ejura GJ, Bako IC, Gbaja IS, Yusuf YI (2014) Fundamental principles of biogas product. Int J Sci Eng Res (IJSER) 2(8):47–50

    Google Scholar 

  • Karichappan T, Venkatachalam S, Jeganathan PM (2014) Investigation on biogas production process from chicken processing industry wastewater using statistical analysis: modelling and optimization. J Renew Sustain Energy 6(4):043117

    Article  CAS  Google Scholar 

  • Khan MA (2019) Optimization and performance improvement of Anaerobic Membrance Biocreactor (AnMBR) for volatile fatty acid and biohydrogen production. Doctoral dissertation

    Google Scholar 

  • Krieg T, Sydow A, Schröder U, Schrader J, Holtmann D (2014) Reactor concepts for bioelectrochemical syntheses and energy conversion. Trends Biotechnol 32:645–655

    Article  CAS  Google Scholar 

  • Lamoh MM, Joy EJ, Rashid M, Islam S, Hashmi S (2020) Biogas production optimization from palm oil mill effluent: experiments with anaerobic reactor. Int J Integr Eng 12(3):261–270

    Google Scholar 

  • Leadbetter JR, Breznak JA (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62:3620–3631

    Article  CAS  Google Scholar 

  • Lebuhn M, Liu F, Heuwinkel H, Gronauer A (2008) Biogas production from mono-digestion of maize silage-long-term process stability and requirements. Water Sci Technol 58:1645–1651

    Article  CAS  Google Scholar 

  • Li Y, Hua D, Xu H, Jin F, Mu H, Zhao Y, Fang X (2020) Acidogenic and methanogenic properties of corn straw silage: regulation and microbial analysis of two-phase anaerobic digestion. Bioresour Technol 307:123180

    Article  CAS  Google Scholar 

  • Liu D, Zhang L, Chen S, Buisman C, ter Heijne A (2016) Bioelectrochemical enhancement of methane production in low temperature anaerobic digestion at 10 °C. Water Res 99:281–287

    Article  CAS  Google Scholar 

  • Lupa B, Hendrickson EL, Leigh JA, Whitman WB (2008) Formate-dependent H2 production by the mesophilic methanogen Methanococcus maripaludis. Appl Environ Microbiol 74:6584–6590

    Article  CAS  Google Scholar 

  • Mayer F, Müller V (2014) Adaptations of anaerobic archaea to life under extreme energy limitation. FEMS Microbiol Rev 38:449–472

    Article  CAS  Google Scholar 

  • Mayumi D, Mochimaru H, Tamaki H, Yamamoto K, Yoshioka H, Suzuki Y, Kamagata Y, Sakata S (2016) Methane production from coal by a single methanogen. Science 354:222–225

    Article  CAS  Google Scholar 

  • McInerney MJ, Struchtemeyer CG, Sieber J, Mouttaki H, Stams AJ, Schink B, Rohlin L, Gunsalus RP (2008) Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann N Y Acad Sci 1125:58–72

    Article  CAS  Google Scholar 

  • Mukhuba M, Roopnarain A, Moeletsi ME, Adeleke R (2020) Metagenomic insights into the microbial community and biogas production pattern during anaerobic digestion of cow dung and mixed food waste. J Chem Technol Biotechnol 95(1):151–162

    Article  CAS  Google Scholar 

  • Nakasaki K, Nguyen KK, Ballesteros FC Jr, Maekawa T, Koyama M (2020) Characterizing the microbial community involved in anaerobic digestion of lipid-rich wastewater to produce methane gas. Anaerobe 61:102082

    Article  CAS  Google Scholar 

  • Neshat SA, Mohammadi M, Najafpour GD, Lahijani P (2017) Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renew Sustain Energy Rev 79:308–322

    Article  CAS  Google Scholar 

  • Ngan NVC, Chan FMS, Nam TS, Van Thao H, Maguyon-Detras MC, Hung DV, Van Hung N (2020) Anaerobic digestion of rice straw for biogas production. In: Sustainable rice straw management. Springer, Cham, pp 65–92

    Chapter  Google Scholar 

  • Olah GA (2005) Beyond oil and gas: the methanol economy. Angew Chem Int Ed 44(18):2636–2639

    Article  CAS  Google Scholar 

  • Paulista LO, Boaventura RA, Vilar VJ, Pinheiro AL, Martins RJ (2020) Enhancing methane yield from crude glycerol anaerobic digestion by coupling with ultrasound or A. niger/E. coli biodegradation. Environ Sci Pollut Res 27(2):1461–1474

    Article  CAS  Google Scholar 

  • Ribot-Llobet E, Nam J-Y, Tokash JC, Guisasola A, Logan BE (2013) Assessment of four different cathode materials at different initial pHs using unbuffered catholytes in microbial electrolysis cells. Int J Hydrogen Energy 38:2951–2956

    Article  CAS  Google Scholar 

  • Sahlström L (2003) A review of survival of pathogenic bacteria in organic waste used in biogas plants. Bioresour Technol 87:161–166

    Article  Google Scholar 

  • Sangali S, Brandelli A (2000) Feather keratin hydrolysis by a vibrio sp. strain kr2. J Appl Microbiol 89(5):735–743

    Article  CAS  Google Scholar 

  • Sarkar S, Banerjee S (2013) Studies on biomethanation of water hyacinth (eichhornia crassipes) using biocatalyst. Int J Energy Environ 4(3):449–458

    CAS  Google Scholar 

  • Schink B, Ward JC, Zeikus JG (1981) Microbiology of wetwood: importance of pectin degradation and clostridium species in living trees. Appl Environ Microbiol 42:526–532

    Article  CAS  Google Scholar 

  • Schnürer A (2016) Biogas production: microbiology and technology. In: Anaerobes in biotechnology. Springer, Cham, pp 195–234

    Google Scholar 

  • Siegert M, Yates MD, Call DF, Zhu X, Spormann A, Logan BE (2014) Comparison of nonprecious metal cathode materials for methane production by electromethanogenesis. ACS Sustain Chem Eng 2:910–917

    Article  CAS  Google Scholar 

  • Sivamani S, Chandrasekaran AP, Balajii M, Shanmugaprakash M, Hosseini-Bandegharaei A, Baskar R (2018) Evaluation of the potential of cassava-based residues for biofuels production. Rev Environ Sci Biotechnol 17(3):553–570

    Article  CAS  Google Scholar 

  • Sivamani S, Prasad BN, Al-Sharji ZAK, Al-Rawas KAM, Al-Blowshi ASD, Al-Yafii ASB et al (2020) Stoichiometric analysis of biogas production from industrial residues. In: Biofuel production technologies: critical analysis for sustainability. Springer, Singapore, pp 141–153

    Chapter  Google Scholar 

  • Song H, Clarke WP (2009) Cellulose hydrolysis by a methanogenic culture enriched from landfill waste in a semi-continuous reactor. Bioresour Technol 100(3):1268–1273

    Article  CAS  Google Scholar 

  • Strong PJ, McDonald B, Gapes DJ (2011) Combined thermochemical and fermentative destruction of municipal biosolids: a comparison between thermal hydrolysis and wet oxidative pre-treatment. Bioresour Technol 102(9):5520–5527

    Article  CAS  Google Scholar 

  • Thauer RK, Kaster A-K, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591

    Article  CAS  Google Scholar 

  • Thirugnanasambandham K, Sivakumar V, Prakash Maran J (2014) Modeling and optimization of biogas production from rice mill effluent using up flow anaerobic sludge blanket reactor. J Renew Sustain Energy 6(2):023129

    Article  CAS  Google Scholar 

  • Thirugnanasambandham K, Sivakumar V, Sruthi B (2016) Recovery of biogas from meat industry wastewater using continuously stirred tank reactor (CSTR): modeling and optimization. Int J Chem React Eng 14(1):125–132

    Article  CAS  Google Scholar 

  • Timmers PHA, Welte CU, Koehorst JJ, Plugge CM, Jetten MSM, Stams AJM (2017) Reverse methanogenesis and respiration in methanotrophic archaea. Archaea 2017:1–22

    Article  CAS  Google Scholar 

  • Tongco JV, Kim S, Oh BR, Heo SY, Lee J, Hwang S (2020) Enhancement of hydrolysis and biogas production of primary sludge by use of mixtures of protease and lipase. Biotechnol Bioprocess Eng 25(1):132–140

    Article  CAS  Google Scholar 

  • Tumbula DL, Bowen TL, Whitman WB (1997) Characterization of pURB500 from the archaeon Methanococcus maripaludis and construction of a shuttle vector. J Bacteriol 179:2976–2986

    Article  CAS  Google Scholar 

  • Uma S, Thalla AK, Devatha CP (2020) Co-digestion of food waste and switchgrass for biogas potential: effects of process parameters. Waste Biomass Valoriz 11(3):827–839

    Article  CAS  Google Scholar 

  • Valentine DL, Blanton DC, Reeburgh WS (2000) Hydrogen production by methanogens under low-hydrogen conditions. Arch Microbiol 174:415–421

    Article  CAS  Google Scholar 

  • Valladão ABG, Freire DMG, Cammarota MC (2007) Enzymatic pre-hydrolysis applied to the anaerobic treatment of effluents from poultry slaughterhouses. Int Biodeter Biodegr 60(4):219–225

    Article  CAS  Google Scholar 

  • van Ommen B, Keijer J, Heil SG, Kaput J (2009) Challenging homeostasis to define biomarkers for nutrition related health. Mol Nutr Food Res 53(7):795–804

    Article  CAS  Google Scholar 

  • Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ, Hugenholtz P, Tyson GW (2016) Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol 1(12):1–9

    Article  CAS  Google Scholar 

  • Vassalle L, Díez-Montero R, Machado ATR, Moreira C, Ferrer I, Mota CR, Passos F (2020) Upflow anaerobic sludge blanket in microalgae-based sewage treatment: co-digestion for improving biogas production. Bioresour Technol 300:122677

    Article  CAS  Google Scholar 

  • Vavilin VA, Fernandez B, Palatsi J, Flotats X (2008) Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview. Waste Manag 28:939–951

    Article  CAS  Google Scholar 

  • Voegeli Y, Lohri C, Kassenga G, Baier U, Zurbrügg C (2009) Technical and biological performance of the Arti compact biogas plant for kitchen waste—case study from Tanzania. In: Proceedings Sardinia, 2009, twelfth international waste management and landfill symposium. CISA, S Margherita die Pula, Cagliari

    Google Scholar 

  • Wang P, Wang H, Qiu Y, Ren L, Jiang B (2017) Microbial characteristics in anaerobic digestion process of food waste for methane production—a review. Bioresour Technol 17:31056–31058

    Google Scholar 

  • Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol 99:7928–7940

    Article  CAS  Google Scholar 

  • Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860

    Article  CAS  Google Scholar 

  • Westerholm M, Schnürer A (2019) Microbial responses to different operating practices for biogas production systems. In: Anaerobic digestion. IntechOpen, London

    Google Scholar 

  • York R (2012) Do alternative energy sources displace fossil fuels? Nat Clim Chang 2(6):441–443

    Article  Google Scholar 

  • Zahedi S, Sales D, Romero LI, Solera R (2013) Hydrogen production from the organic fraction of municipal solid waste in anaerobic thermophilic acidogenesis: influence of organic loading rate and microbial content of the solid waste. Bioresour Technol 129:85–91

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sivamani, S., Saikat, B., Naveen Prasad, B.S., Baalawy, A.A.S., Al-Mashali, S.M.A. (2021). A Comprehensive Review on Microbial Technology for Biogas Production. In: Srivastava, M., Srivastava, N., Singh, R. (eds) Bioenergy Research: Revisiting Latest Development. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-33-4615-4_3

Download citation

Publish with us

Policies and ethics