Skip to main content

Waste Biomass and Blended Bioresources in Biogas Production

  • Chapter
  • First Online:
Improving Biogas Production

Abstract

Global energy demand is getting higher, and most of this energy is produced through fossil fuels. Recent studies report that anaerobic digestion is an efficient alternative to produce biogas. Moreover, the transformation of complex organic materials into a source of clean and renewable energy reduces the emission of greenhouse gases and can produce as by-product a high-value fertilizer for growing crops. The anaerobic co-digestion is an option to solve the disadvantages of single substrate digestion system, being the chemical composition and properties of the substrates, the operating parameters (temperature, pH, charge rate, etc.), the biodegradability, bioaccessibility, and bioavailability, important parameters to be optimized. The main materials that could be used for biogas production are waste from cities, residues from the production of other biofuels, agro-industrial waste in general, agricultural crops, straws, or microalgae biomass obtained by cultivation in wastewater. However, some of these materials, specially raw materials, need to be treated to improve the biogas production. The aim of this chapter is to review the main materials that could be used for biogas production and the factors to optimize the production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abouelenien F, Fujiwara W, Namba Y, Kosseva M (2010) Improved methane fermentation of chicken manure via ammonia removal by biogas recycle. Bioresour Technol 10:6368–6373

    Article  Google Scholar 

  • Achinas S, Achinas V, Euverink GJW (2017) A technological overview of biogas production from biowaste. Engineering 3:299–307

    Article  Google Scholar 

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685

    Article  Google Scholar 

  • Agustini CA, Spier F, Costa M, Gutterres M (2018a) Biogas production for anaerobic co-digestion of tannery solid wastes under presence and absence of the tanning agent. Resour Conserv Recycl 130:51–59

    Article  Google Scholar 

  • Agustini C, Costa M, Gutterres M (2018b) Biogas production from tannery solid wastes–scale-up and cost saving analysis. J Cleaner Prod 187:158–164

    Article  Google Scholar 

  • Alexandropoulou M, Antonopoulou G, Fragkou E, Ntaikou I, Lyberatos G (2016) Fungal pretreatment of willow sawdust and its combination with alkaline treatment for enhancing biogas production. J Environ Manag 203:704–713

    Article  Google Scholar 

  • Amirta R, Tanabe T, Watanabe T, Honda Y, Kuwahara M, Watanabe T (2006) Methane fermentation of Japanese cedar wood pretreated with a white rot fungus Ceriporiopsis subvermispora. J Biotechnol 123:71–77

    Article  Google Scholar 

  • Amon T, Amon B, Kryvoruchko V, Zollitsch W, Mayer K, Gruber L (2007) Biogas production from maize and dairy cattle manure—influence of biomass composition on the methane yield. Agric Ecosyst Environ 118:173–182

    Article  Google Scholar 

  • ANEEL (2017) The Brazilian National Electric Energy Agency. Management Information Bulletin

    Google Scholar 

  • Aneks diagnostyczny (2014) Regionalny Program Operacyjny Województwa Lubelskiego na lata 2014–2020. Załącznik nr 1 do projektu Regionalnego Programu Operacyjnego Województwa Lubelskiego na lata 2014–2020

    Google Scholar 

  • Anyaoku CC, Baroutian S (2018) Decentralized anaerobic digestion systems for increased utilization of biogas from municipal solid waste. Renew Sustain Energy Rev 90:982–991

    Article  Google Scholar 

  • Appels L, Baeyens J, Degreve J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34:755–781

    Article  Google Scholar 

  • Appels L, Lauwers J, Degreve J, Helsen L, Lievens B, Willems K, Impe JV, Dewil R (2011) Anaerobic digestion in global bio-energy production: potential and research challenges. Renew Sustain Energy Rev 15:4295–4301

    Article  Google Scholar 

  • Aslanzadeh S, Berg A, Taherzadeh MJ, Horváth IS (2014) Biogas production from N-methylmorpholine-N-oxide (NMMO) pretreated forest residues. Appl Biochem Biotechnol 172:2998–3008

    Article  Google Scholar 

  • Barros RM, Filho GLT, Santos AHM, Ferreira CH, Pieroni MF, Moura JS, Abe HSS, Brito LM, Santos IFS, Ribeiro EM, Freitas JVR (2018) A potential of the biogás generating and energy recovering from municipal solid waste. Renew Energy Focus 25:4–16

    Article  Google Scholar 

  • Barua VB, Goud VV, Kalamdhad AS (2018) Microbial pretreatment of water hyacinth for enhanced hydrolysis followed by biogas production. Renew Energy 126:21–29

    Article  Google Scholar 

  • Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pre-treatment for bioconversion of lignocellulosic biomass. Renew Sustain Energy Rev 36:91–106

    Article  Google Scholar 

  • Belostotskiy DE, Ziganshina EE, Siniagina M, Boulygina EA, Miluykov VA, Ziganshin AM (2015) Impact of the substrate loading regime and phosphoric acid supplementation on performance of biogas reactors and microbial community dynamics during anaerobic digestion of chicken wastes. Bioresour Technol 193:42–52

    Article  Google Scholar 

  • Bolzonella D, Pavan P, Mace S, Cecchi F (2006) Dry anaerobic digestion of differently sorted organic municipal solid waste: a full-scale experience. Water Sci Technol 53:23–32

    Article  Google Scholar 

  • Bonilla S, Choolaei Z, Meyer T, Edwards EA, Alexander F, Yakunin AFD, Allen DG (2018) Evaluating the effect of enzymatic pretreatment on the anaerobic digestibility of pulp and paper biosludge. Biotechnol Rep 17:77–85

    Article  Google Scholar 

  • Browne JD, Allen E, Murphy JD (2014) Assessing the variability in biomethane production from the organic fraction of municipal solid waste in batch and continuous operation. Appl Energy 128:307–314

    Article  Google Scholar 

  • Bruton T, Lyons H, Lerat Y, Stanley M, Rasmussen MB (2009) A review of the potential of marine algae as a source of biofuel in Ireland. Sustainable Energy Ireland, Dublin

    Google Scholar 

  • Budiyono Primaloka AD, Ardhannari L, Matin HHA, Sumardiono S (2018) Study of biogas production from cassava industrial waste by anaerobic process. In: MATEC Web Conference on 2018, p 156

    Google Scholar 

  • Chen H, Liu J, Chang X, Chen D, Xue Y, Liu P, Lin H, Han S (2017) A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process Technol 160:196–206

    Article  Google Scholar 

  • Cheng XY, Liu CZ (2010) Enhanced biogas production from herbal-extraction process residues by microwave-assisted alkaline pretreatment. J Chem Technol Biotechnol 85:127–131

    Article  Google Scholar 

  • Cho S, Park S, Seon J, Yu J, Lee T (2013) Evaluation of thermal, ultrasonic and alkali pretreatments on mixed-microalgal biomass to enhance anaerobic methane production. Bioresour Technol 143:330–336

    Article  Google Scholar 

  • Clercq DD, Wen Z, Fan F, Caicedo L (2016) Biomethane production potential from restaurant food waste in megacities and project level-bottlenecks: A case study in Beijing. Renew Sustain Energy Rev 59:1676–1685

    Article  Google Scholar 

  • Costa JC, Barbosa SG, Alves MM, Sousa DZ (2012) Thermochemical pre- and biological co-treatments to improve hydrolysis and methane production from poultry litter. Bioresour Technol 11:141–147

    Article  Google Scholar 

  • De La Rubia MA, Fernandez-Cegri V, Raposo F, Borja R (2011) Influence of particle size and chemical composition on the performance and kinetics of anaerobic digestion process of sunflower oil cake in batch mode. Biochem Eng J 58–59:162–167

    Article  Google Scholar 

  • Deng L, Liu Y, Zheng D, Wang L, Pu X, Song L, Wang Z, Lei Y, Chen Z, Long Y (2017) Application and development of biogas technology for the treatment of waste in China. Renew Sustain Energy Rev 70:845–851

    Article  Google Scholar 

  • Feng L, Chen ZJ (2008) Research progress on dissolution and functional modification of cellulose in ionic liquid. J Mol Liq 142:1–5

    Article  Google Scholar 

  • Filho GM, Lumi M, Marder M, Leite LCS (2018) Energy recovery from wine sector wastes: a study about the biogas generation potential in a vineyard from Rio Grande do Sul, Brazil. Sustain Energy Technol Assess 29:44–49

    Google Scholar 

  • Florkowski WJ, Us A, Klepacka AM (2018) Food waste in rural households support for local biogas production in Lubelskie Voivodship (Poland). Resour Conserv Recycl 136:46–52

    Article  Google Scholar 

  • Gallert C, Winter J (2005) Bacterial metabolism in wastewater treatment systems. In: Jördening HJ, Winter J (eds) Environmental biotechnology: concepts and applications. Wiley-VCH, Weinheim, pp 1–48

    Google Scholar 

  • Gámez S, González-Cabriales JJ, Ramírez JA, Garrote G, Vázquez M (2006) Study of the hydrolysis of sugar cane bagasse using phosphoric acid. J Food Eng 74:78–88

    Article  Google Scholar 

  • Gonzáleza LM, Correaa DF, Ryana S, Jensenb PD, Prattc S, Schenka PM (2018) Integrated biodiesel an biogas production from microalgae: towards a sustainable closed loop through nutrient recycling. Renew Sustain Energy Rev 82:1137–1148

    Article  Google Scholar 

  • González-Fernández C, Sialve B, Bernet N, Steyer JP (2013) Effect of organic loading rate on anaerobic digestion of thermally pretreated Scenedesmus sp. Biomass. Bioresour Technol 129:219–223

    Google Scholar 

  • Gutiérrez EC, Wall DM, O’shea R, Novelo RM, Gómez MM, Murphy JD (2018) An economic and carbon analysis of biomethane production from food waste to be used as a transport fuel in Mexico. J Cleaner Prod 196:852–862

    Google Scholar 

  • Hagos K, Zong J, Li D, Liu C, Lu X (2017) Anaerobic co-digestion process for biogas production: progress, challenges and perspectives. Renew Sustain Energy Rev 76:1485–1496

    Article  Google Scholar 

  • Hartmann H, Angelidaki I, Ahring BK (2002) Co-digestion of the organic fraction of municipal waste with other waste types. In: Mata-Alvarez J (ed) Biomethanization of the organic fraction of municipal solid wastes. IWA Publishing, UK, London, pp 181–199

    Google Scholar 

  • He YF, Pang YZ, Li XJ, Liu YP, Li RP, Zheng MX (2009) Investigation on the changes of main compositions and extractives of rice straw pretreated with sodium hydroxide for biogas production. Energy Fuel 23:2220–2224

    Article  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  Google Scholar 

  • Hijazi O, Munro S, Zerhusen B, Effenberger M (2016) Review of life cycle assessment for biogas production in Europe. Renew Sustain Energy Rev 54:1291–1300

    Article  Google Scholar 

  • Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100:5478–5484

    Article  Google Scholar 

  • Hultberg M, Lind O, Birgersson G, Asp H (2017) Use of the effluent from biogas production for cultivation of Spirulina. Bioprocess Biosyst Eng 40:625–631

    Article  Google Scholar 

  • Kabir MM, Rajendran K, Taherzadeh MJ, Horváth IS (2015) Experimental and economical evaluation of bioconversion of forest residues to biogas using organosolv pretreatment. Bioresour Technol 178:201–208

    Article  Google Scholar 

  • Karimi S, Karimi K (2018) Efficient ethanol production from kitchen and garden wastes and biogas from the residues. J Cleaner Prod 187:37–45

    Article  Google Scholar 

  • Karunanithy C, Muthukumarappan K (2010) Influence of extruder temperature and screw speed on pretreatment of corn stover while varying enzymes and their ratios. Appl Biochem Biotechnol 162:264–279

    Article  Google Scholar 

  • Kavitha S, Banu JR, Priya AA, Uan DK, Yeom IT (2017) Liquefaction of food waste and its impacts on anaerobic biodegradability, energy ratio and economic feasibility. Appl Energy 208:228–238

    Article  Google Scholar 

  • Kayhanian M, Hardy S (1994) The impact of four design parameters on the performance of a high-solids anaerobic digestion of municipal solid waste for fuel gas production. Environ Technol 15:557–567

    Article  Google Scholar 

  • Kobayashi T, Kuramochi H, Xu KQ (2017) Variable oil properties and biomethane production of grease trap waste derived from different resources. Inter Biodeterior Biodegrad 119:273–281

    Article  Google Scholar 

  • Kratky L, Jirout T (2011) Biomass size reduction machines for enhancing biogas production. Chem Eng Technol 34:391–399

    Article  Google Scholar 

  • Kroger M, Muller-Langer F (2012) Review on possible algal-biofuel production processes. Biofuels 3:33–49

    Article  Google Scholar 

  • Kumari D, Singh R (2018) Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew Sustain Energy Rev 90:877–891

    Article  Google Scholar 

  • Lalak J, Kasprzycka A, Martyniak D, Tys J (2016) Effect of biological pretreatment of Agropyronelongatum ‘BAMAR’ on biogas production by anaerobic digestion. Bioresour Technol 200:194–200

    Article  Google Scholar 

  • Levis JW, Barlaz MA, Themelis NJ, Ulloa P (2010) Assessment of the state of food waste treatment in the United States and Canada. Waste Manag 30:1486–1494

    Article  Google Scholar 

  • Li Y, Zhang R, Chang C, Liu G, He Y, Liu X (2013a) Biogas production from codigestion of corn stover and chicken manure under anaerobic wet, hemisolid, and solid state conditions. Bioresour Technol 149:406–412

    Article  Google Scholar 

  • Li Y, Zhang R, Liu X, Chang C, Xiao X, Lu F, He Y, Liu G (2013b) Evaluating methane production from anaerobic mono- and Co-digestion of kitchen waste, corn stover, and chicken manure. Energy Fuels 27:189–194

    Article  Google Scholar 

  • Li J, Zhang R, Siddhu MAH, He Y, Wang W, Li Y, Chen C, Liu G (2015) Enhancing methane production of corn stover through a novel way: sequent pretreatment of potassium hydroxide and steam explosion. Bioresour Technol 181:345–350

    Article  Google Scholar 

  • Lin Y, Wang D, Wang L (2010) Biological pretreatment enhances biogas production in the anaerobic digestion of pulp and paper sludge. Waste Manag Res 28:800–810

    Article  Google Scholar 

  • Liu LY, Chen HZ (2006) Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl. Chin Sci Bull 51:2432–2436

    Article  Google Scholar 

  • Lopes ACP, Silva CM, Rosa AP, Rodrigues FA (2017) Biogas production from thermophilic anaerobic digestion of kraft pulp mill sludge. Renew Energy 124:40–49

    Article  Google Scholar 

  • Mannucci A, Munz G, Lubello C (2010) Anaerobic treatment of vegetable tannery wastewaters: a review. Desalination 264:1–8

    Article  Google Scholar 

  • Marousek J (2012) Finding the optimal parameters for the steam explosion process of hay. Rev Téc Ing Univ Zulia 35(2):170–178

    Google Scholar 

  • Martínez PM, Bakker R, Harmsen P, Gruppen H, Kabel M (2015) Importance of acid or alkali concentration on the removal of xylan and lignin for enzymatic cellulose hydrolysis. Ind Crop Prod 64:88–96

    Article  Google Scholar 

  • McDonough TJ (1992) The chemistry of organosolv delignification. Tappi J 76:186–193

    Google Scholar 

  • Mohamad IN, Rohani R, Nor MTM, Claassen P, Abd RMS, Mastar MMS, Rolsi MI (2017) An overview of gas-upgrading technologies for biohydrogen produced from treatment of palm oil mill effluent. J Eng Sci Technol 12:725–755

    Google Scholar 

  • Monlau F, Sambusiti C, Barakat A, Guo XM, Latrille E, Trably E, Steyer JP, Carrere H (2012) Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials. Environ Sci Technol 46:12217–12225

    Article  Google Scholar 

  • Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27:77–93

    Article  Google Scholar 

  • Morero B, Vicentin R, Campanella EA (2017) Assessment of biogas production in Argentina from co-digestion of sludge and municipal solid waste. Waste Manag 61:195–205

    Article  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  Google Scholar 

  • Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56

    Article  Google Scholar 

  • Ng CA, Wong LY, Chai HY, Bashir MJK, Ho CD, Nisar H, Lo PK (2017) Investigation on the performance of hybrid anaerobic membrane bioreactors for fouling control and biogas production in palm oil mill effluent treatment. Water Sci Technol

    Google Scholar 

  • Nielfa A, Cano R, Fdz-Polanco M (2015) Theoretical methane production generated by the codigestion of organic fraction municipal solid waste and biological sludge. Biotechnol Rep 5:14–21

    Article  Google Scholar 

  • Ostovareh S, Karimi K, Zamani A (2015) Efficient conversion of sweet sorghum stalks to biogas and ethanol using organosolv pretreatment. Ind Crops Prod 66:170–177

    Article  Google Scholar 

  • Patinvoh RJ, Osadolor OA, Chandolias K, Horváth IS, Taherzadeh MJ (2017) Innovative pretreatment strategies for biogas production. Bioresour Technol 224:13–24

    Article  Google Scholar 

  • Paudel SR, Banjara SP, Choi OK, Park KY, Kim YM, Lee JW (2017) Pretreatment of agricultural biomass for anaerobic digestion: current state and challenges. Bioresour Technol. 245:1194–1205

    Article  Google Scholar 

  • Pierre JSP, Duran L, Heiningen AV (2015) Fast pyrolysis of muconic acid and formic acid salt mixtures, J Anal Appl Pyrolysis 113:591–598

    Google Scholar 

  • Pilli S, Yan S, Tyagi RD, Surampalli RY (2014) Thermal pretreatment of sewage sludge to enhance anaerobic digestion: a review. Crit Rev Environ Sci Technol 45:669–702

    Article  Google Scholar 

  • Prabakar D, Suvetha SK, Manimudi VT, Mathimani T, Kumar G, Rene ER, Pugazhendhi A (2018) Pretreatment technologies for industrial effluents: critical review on bioenergy production and environmental concerns. J Environ Manage 218:165–180

    Article  Google Scholar 

  • Priebe GPS, Kipper E, Gusmão AL, Marcilio NR, Gutterres M (2016) Anaerobic digestion of chrome-tanned leather waste for biogas production. J Cleaner Prod 129:410–416

    Article  Google Scholar 

  • Raposo F, De La Rubia MA, Fernández-Cegrí V, Borja R (2012) Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures. Renew Sustain Energy Rev 16:861–877

    Article  Google Scholar 

  • Ravindran R, Jaiswal AK (2016) A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: challenges and opportunities. Bioresour Technol 199:92–102

    Article  Google Scholar 

  • Rempel A (2018) Produção de bioetanol e biometano a partir da biomassa de Spirulina sp. Dissertação de mestrado - Faculdade de Engenharia e Arquitetura, Universidade de Passo Fundo. Passo Fundo, p 87

    Google Scholar 

  • Righi S, Oliviero L, Pedrini M, Buscaroli A, Casa CD (2013) Life cycle assessment of management systems for sewage sludge and food waste: centralized and decentralized approaches. J Cleaner Prod 44:8–17

    Article  Google Scholar 

  • Rodriguez C, Alaswad A, Benyounis KY, Olabi AG (2017) Pretreatment techniques used in biogas production from grass. Renew Sustain Energy Rev 68:1193–1204

    Article  Google Scholar 

  • Saharan BS, Sharma D, Sahu R, Sahin O, Warren A (2013) Towards algal biofuel production: a concept of green bioenergy development. Innov Rom Food Biotechnol 1:1–21

    Google Scholar 

  • Santos IFS, Vieira NDB, Nóbrega LGB, Barros RM, Filho GLT (2018) Assessment of potential biogas production from multiple organic wastes in Brazil: impact on energy generation, use, and emissions abatement. Resour Conserv Recycl 131:54–63

    Article  Google Scholar 

  • Schroyen M, Vervaeren H, Vandepitte H, Stijn WH, Hulle V, Raes K (2015) Effect of enzymatic pretreatment of various lignocellulosic substrates on production of phenolic compounds and biomethane potential. Biores Technol 192:696–702

    Article  Google Scholar 

  • Shrestha S, Fonolla X, Khanal SK, Raskin L (2017) Biological strategies for enhanced hydrolysis of lignocellulosic biomass during anaerobic digestion: current status and future perspectives. Bioresour Technol 245:1245–1257

    Article  Google Scholar 

  • Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass and overview. Bioresour Technol 199:76–82

    Article  Google Scholar 

  • Solarte-Toro JC, Chacón-Pérez Y, Cardona-Alzate CA (2018) Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material. Electron J Biotechnol 33:52–62

    Article  Google Scholar 

  • Song Z, Yang G, Liu X, Yan Z, Yuan Y, Liao Y (2014) Comparison of seven chemical pretreatments of corn straw for improving methane yield by anaerobic digestion. PLoS ONE 9(6):e93801

    Article  Google Scholar 

  • Sorensen B (2000) Renewable energy: its physics, engineering, environmental impacts, economics & planning, 2nd edn. Academic Press, Millbrae

    Google Scholar 

  • Suksong W, Jehlee A, Singkhala A, Kongjan P, Prasertsan P, Imai T, O-Thong S (2017) Thermophilic solid-state anaerobic digestion of solid waste residues from palm oil mill industry for biogas production. Ind Crops Prod 95:502–511

    Article  Google Scholar 

  • Sun Y, Cheng JJ (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  Google Scholar 

  • Surendra KC, Takara D, Hashimoto AG, Khanal SK (2014) Biogas as a sustainable energy source for developing countries: opportunities and challenges. Renew Sustain Energy Rev 31:846–859

    Article  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    Article  Google Scholar 

  • Takeda H (1996) Cell wall sugars of some Scenedesmus species. Photochemistry 42(3):673–675

    Article  Google Scholar 

  • Tyagi VK, Fdez-Güelfo LA, Zhou Y, Álvarez-Gallego CJ, Garcia LIR, Ng WJ (2018) Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges. Renew Sustain Energy Rev 93:380–399

    Article  Google Scholar 

  • Uggetti E, Passos F, Sole M, Garfi M, Ferrer I (2017) Recent achievements in the production of biogas from microalgae. Waste Biomass 8:129–139

    Article  Google Scholar 

  • Varol A, Ugurlu A (2016) Biogas production from microalgae (Spirulina platensis) in a two stage anaerobic system. Waste Biomass 7:193–200

    Article  Google Scholar 

  • Venturin B, Camargo AF, Scapini T, Mulinari J, Bonatto C, Bazoti S, Siqueira DP, Colla LM, Alves S Jr, Bender JP, Steinmetz RLR, Kunz A, Fongaro G, Treichel H (2018) Effect of pretreatments on corn stalk chemical properties for biogas production purposes. Bioresour Technol 266:116–124

    Article  Google Scholar 

  • Wang X, Yang G, Feng Y, Ren G, Han X (2012) Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic codigestion of dairy, chicken manure and wheat straw. Bioresour Technol 2012(120):78–83

    Google Scholar 

  • Wang F, Zhang D, Wu H, Yi W, Fu P, Li Y, Li Z (2016) Enhancing biogas production of corn stover by fast pyrolysis pretreatment. Bioresour Technol 218:731–736

    Article  Google Scholar 

  • Williams BA, Van Der Poel AFB, Boer H, Tamminga S (1997) The effect of extrusion conditions on the fermentability of wheat straw and corn silage. J Sci Food Agric 74:117–124

    Article  Google Scholar 

  • Yachmenev V, Condon B, Klasson T, Lambert A (2009) Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. J Bio Mater Bioenergy 3:25–31

    Article  Google Scholar 

  • Yadvika TR, Kohli SS, Rana V (2004) Enhancement of biogas production from solid substrates using different techniqueseea review. Bioresour Technol 95:1–10

    Article  Google Scholar 

  • Zhan X, Wang D, Bean SR, Mo X, Sun XS, Boyle D (2006) Ethanol production from supercritical-fluid-extrusion cooked sorghum. Ind Crops Prod 23:304–310

    Article  Google Scholar 

  • Zhang Q, He J, Tian M, Mao Z, Tang L, Zhang J et al (2011) Enhancement of methane production from cassava residues by biological pretreatment using a constructed microbial consortium. Bioresour Technol 102:8899–8906

    Article  Google Scholar 

  • Zhao J, Zheng Y, Li Y (2014) Fungal pretreatment of yard trimmings for enhancement of methane yield from solid-state anaerobic digestion. Bioresour Technol 156:176–181

    Article  Google Scholar 

  • Zhao X, Luo K, Zhang Y, Zheng Z, Cai Y, Wen B, Cui Z, Wang X (2018) Improving the methane yield of maize straw: focus on the effects of pretreatment with fungi and their secreted enzymes combined with sodium hydroxide. Bioresour Technol 250:204–213

    Article  Google Scholar 

  • Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53

    Article  Google Scholar 

  • Zhou S, Zhang Y, Dong Y (2012) Pretreatment for biogas production by anaerobic fermentation of mixed corn stover and cow dung. Energy 46:644–648

    Article  Google Scholar 

  • Zhu SD (2008) Perspective used of ionic liquids for the efficient utilization of lignocellulosic materials. J Chem Technol Biotechnol 83:777–779

    Article  Google Scholar 

  • Ziganshina EE, Belostotskiy DE, Shushlyaev RV, Miluykov VA, Vankov PY, Ziganshin AM (2014) Microbial community diversity in anaerobic reactors digesting turkey, chicken, and swine wastes. J Microbiol Biotechnol 2014(24):1464–1472

    Article  Google Scholar 

  • Zubrowska-Sudol M, Walczak J (2014) Effects of mechanical disintegration of activated sludge on the activity of nitrifying and denitrifying bacteria and phosphorus accumulating organisms. Water Res 61:200–209

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciane Maria Colla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Colla, L.M. et al. (2019). Waste Biomass and Blended Bioresources in Biogas Production. In: Treichel, H., Fongaro, G. (eds) Improving Biogas Production. Biofuel and Biorefinery Technologies, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-10516-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10516-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10515-0

  • Online ISBN: 978-3-030-10516-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics