Skip to main content

Seed Endophytes and Their Potential Applications

  • Chapter
  • First Online:
Seed Endophytes

Abstract

With growing interest in the role of endophyte to the host plant ecology, health, and productivity, this chapter discusses seed-inhabiting endophytes. These endophytes were less recognized when compared with those found in the other parts of the plant. However, they cannot be ignored as they are the first one colonizing young seedlings and further determining the fate of the plant. These endophytes often have potential to improve seed germination and seedling growth. Recent advances in seed endophytes have proved that they can confer stress tolerance to the host plants, especially the heavy metal resistance. Microbial dynamic equilibrium with plant systems is vital for the germination, growth, and reproductive phases of plant life cycle. The colonization and transmission of seed endophytes suggests that host plants select an endophytic community having beneficial traits that can be passed to successive generations. Seed endophytes can facilitate the improvement of seed quality and plant growth of agriculturally important crops via different biotechnological applications; they have prospects in endophyte-mediated phytoremediation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelatey LM, Khalil WK, Ali TH et al (2011) Heavy metal resistance and gene expression analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Egyptian soils. J Appl Sci Environ Sanitation 6(2):201–212

    CAS  Google Scholar 

  • Alibrandi P, Cardinale M, Rahman MM et al (2018) The seed endosphere of Anadenanthera colubrina is inhabited by a complex microbiota, including Methylobacterium spp. and Staphylococcus spp. with potential plant-growth promoting activities. Plant Soil 422(1–2):81–99

    Article  CAS  Google Scholar 

  • Al-Khashman OA, Shawabkeh RA (2006) Metals distribution in soils around the cement factory in southern Jordan. Environ Pollut 140(3):387–394

    Article  CAS  PubMed  Google Scholar 

  • Andrews GK (2000) Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem Pharmacol 59(1):95–104

    Article  CAS  PubMed  Google Scholar 

  • Bacilio-Jiménez M, Aguilar-Flores S, del Valle MV et al (2001) Endophytic bacteria in rice seeds inhibit early colonization of roots by Azospirillum brasilense. Soil Biol Biochem 33(2):167–172

    Article  Google Scholar 

  • Bacon CW, Hill NS (1996) Symptomless grass endophytes: products of coevolutionary symbioses and their role in the ecological adaptations of grasses. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants: systematics, ecology, and evolution. APS Press, St Paul, MN, pp 155–178

    Google Scholar 

  • Bacon CW, Hinton DM (2006) Bacterial endophytes: the endophytic niche, its occupants and its utility. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Amsterdam, pp 15–194

    Google Scholar 

  • Bacon CW, White JF (2000) Microbial endophytes. Marcel Dekker, New York

    Google Scholar 

  • Bacon CW, Porter JK, Robbins JD et al (1977) Epichloe typhina from toxic tall fescue grasses. Appl Environ Microbiol 34(5):576–581

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker KF, Smith SH (1966) Dynamics of seed transmission of plant pathogens. Annu Rev Phytopathol 4(1):311–332

    Article  Google Scholar 

  • Ball OJ, Prestidge RA, Sprosen JM (1995) Interrelationships between Acremonium lolii, peramine, and lolitrem B in perennial ryegrass. Appl Environ Microbiol 61(4):1527–1533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barret M, Briand M, Bonneau S et al (2014) Emergence shapes the structure of the seed-microbiota. Appl Environ Microbiol 81(4):1257–1266

    Article  CAS  Google Scholar 

  • Bonnet M, Camares O, Veisseire P (2000) Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv Apollo). J Exp Bot 51(346):945–953

    CAS  PubMed  Google Scholar 

  • Boursnell JG (1950) The symbiotic seed-borne fungus in the Cistaceae: I. Distribution and function of the fungus in the seeding and in the tissues of the mature plant. Ann Bot 14(54):217–243

    Article  Google Scholar 

  • Briggs L, Crush J, Ouyang L et al (2013) Neotyphodium endophyte strain and superoxide dismutase activity in perennial ryegrass plants under water deficit. Acta Physiol Plant 35(5):1513–1520

    Article  CAS  Google Scholar 

  • Cabral D, Stone JK, Carroll GC (1993) The internal mycobiota of Juncus spp.: microscopic and cultural observations of infection patterns. Mycol Res 97(3):367–376

    Article  Google Scholar 

  • Carroll G (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69(1):2–9

    Article  Google Scholar 

  • Chaudhry V, Sharma S, Bansa K et al (2017) Glimpse into the genomes of rice endophytic bacteria: diversity and distribution of firmicutes. Front Microbiol 7:2115

    Article  PubMed  PubMed Central  Google Scholar 

  • Chong TM, Yin WF, Chen JW et al (2016) Comprehensive genomic and phenotypic metal resistance profile of Pseudomonas putida strain S13.1.2 isolated from a vineyard soil. AMB Exp 6(1):95

    Article  CAS  Google Scholar 

  • Chu L, Li W, Li XY et al (2017) Diversity and heavy metal resistance of endophytic fungi from seeds of hyperaccumulators. Jiangsu J Agric Sci 1:008

    Google Scholar 

  • Cope-Selby N, Cookson A, Squance M et al (2017) Endophytic bacteria in Miscanthus seed: implications for germination, vertical inheritance of endophytes, plant evolution and breeding. GCB Bioenergy 9(1):57–77

    Article  CAS  Google Scholar 

  • Czarna M, Kolodziejczak M, Janska H (2016) Mitochondrial proteome studies in seeds during germination. Proteomes 4(2):19

    Article  PubMed Central  CAS  Google Scholar 

  • De Bary A (1866) Morphologic und physiologie der plize, Flechten, und Myxomyceten. In: Hofmeister’s hand book of physiological botany, vol 2. Leipzig

    Google Scholar 

  • Di Vietro L, Daghino S, Abbà S et al (2014) Gene expression and role in cadmium tolerance of two PLAC8-containing proteins identified in the ericoid mycorrhizal fungus Oidiodendron maius. Fungal Biol 118(8):695–703

    Article  PubMed  CAS  Google Scholar 

  • Donnarumma F, Capuana M, Vettori C et al (2011) Isolation and characterisation of bacterial colonies from seeds and in vitro cultures of Fraxinus spp. from Italian sites. Plant Biol 13(1):169–176

    Article  CAS  PubMed  Google Scholar 

  • Ernst M, Mendgen KW, Wirsel SG (2003) Endophytic fungal mutualists: seed-borne Stagonospora spp. enhance reed biomass production in axenic microcosms. Mol Plant Microbe Interact 16(7):580–587

    Article  CAS  PubMed  Google Scholar 

  • Ewald PW (1987) Transmission modes and evolution of the parasitism-mutualism continuum. Ann N Y Acad Sci 503(1):295–306

    Article  CAS  PubMed  Google Scholar 

  • Ezzouhri L, Castro E, Moya M et al (2009) Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier, Morocco. Afr J Microbiol Res 3(2):35–48

    CAS  Google Scholar 

  • Facchinelli A, Sacchi E, Mallen L (2001) Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ Pollut 114(3):313–324

    Article  CAS  PubMed  Google Scholar 

  • Ferreira A, Quecine MC, Lacava PT et al (2008) Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. FEMS Microbiol Lett 287(1):8–14

    Article  CAS  PubMed  Google Scholar 

  • Finch SC, Pennell CGL, Kerby JWF et al (2016) Mice find endophyte-infected seed of tall fescue unpalatable–implications for the aviation industry. Grass Forage Sci 71(4):659–666

    Article  CAS  Google Scholar 

  • Freeman EM (1903) The seed-fungus of Lolium temulentum, L, the Darnel. Proc R Soc Lond 71(467–476):27–30

    Google Scholar 

  • Gagne-Bourgue F, Aliferis KA, Seguin P et al (2013) Isolation and characterization of indigenous endophytic bacteria associated with leaves of switchgrass (Panicum virgatum L.) cultivars. J Appl Microbiol 114(3):836–853

    Article  CAS  PubMed  Google Scholar 

  • Ganley RJ, Newcombe G (2006) Fungal endophytes in seeds and needles of Pinus monticola. Mycol Res 110(3):318–327

    Article  PubMed  Google Scholar 

  • Gao T, Shi X (2018) Preparation of a synthetic seed for the common reed harboring an endophytic bacterium promoting seedling growth under cadmium stress. Environ Sci Pollut Res 25(9):8871–8879

    Article  CAS  Google Scholar 

  • González-Fernández M, García-Barrera T, Arias-Borrego A et al (2009) Metallomics integrated with proteomics in deciphering metal-related environmental issues. Biochimie 91(10):1311–1317

    Article  PubMed  CAS  Google Scholar 

  • Hameed A, Yeh MW, Hsieh YT et al (2015) Diversity and functional characterization of bacterial endophytes dwelling in various rice (Oryza sativa L.) tissues, and their seed-borne dissemination into rhizosphere under gnotobiotic P-stress. Plant Soil 394(1–2):177–197

    Article  CAS  Google Scholar 

  • Hardoim PR, Van Overbeek LS, Van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, Hardoim CC, Van Overbeek LS et al (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One 7(2):e30438. https://doi.org/10.1371/journal.pone.0030438

  • Herrera SD, Grossi C, Zawoznik M et al (2016) Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiol Res 186:37–43

    Article  CAS  Google Scholar 

  • Hložková K, Matěnová M, Žáčková P et al (2016) Characterization of three distinct metallothionein genes of the Ag-hyperaccumulating ectomycorrhizal fungus Amanita strobiliformis. Fungal Biol 120(3):358–369

    Article  PubMed  CAS  Google Scholar 

  • Hodgson S, Cates C, Hodgson J et al (2014) Vertical transmission of fungal endophytes is widespread in forbs. Ecol Evol 4(8):1199–1208

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu N, Zhao B (2006) Key genes involved in heavy-metal resistance in Pseudomonas putida CD2. FEMS Microbiol Lett 267(1):17–22

    Article  PubMed  CAS  Google Scholar 

  • Hubbard M, Germida J, Vujanovic V (2012) Fungal endophytes improve wheat seed germination under heat and drought stress. Botany 90(2):137–149

    Article  Google Scholar 

  • Hubbard M, Germida JJ, Vujanovic V (2014) Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second-generation seed viability. J Appl Microbiol 116(1):109–122

    Article  CAS  PubMed  Google Scholar 

  • Ikeda S, Fuji SI, Sato T et al (2006) Community analysis of seed-associated microbes in forage crops using culture-independent methods. Microb Environ 21(2):112–121

    Article  Google Scholar 

  • James D, Mathew S (2015) Antagonistic activity of endophytic microorganisms against bacterial wilt disease of tomato. Int J Curr Adv Res 4:399–404

    Google Scholar 

  • Job C, Rajjou L, Lovigny Y et al (2005) Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol 138(2):790–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS One 6(6):e20396. https://doi.org/10.1371/journal.pone.0020396

  • Kaga H, Mano H, Tanaka F et al (2009) Rice seeds as sources of endophytic bacteria. Microb Environ 24(2):154–162

    Article  Google Scholar 

  • Kaul S, Sharma T, Dhar MK (2016) “Omics” tools for better understanding the plant–endophyte interactions. Front Plant Sci 7(955). https://doi.org/10.3389/fpls.2016.00955

  • Khalaf EM, Raizada MN (2016) Taxonomic and functional diversity of cultured seed associated microbes of the cucurbit family. BMC Microbiol 16(1):131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khalaf EM, Raizada MN (2018) Bacterial seed endophytes of domesticated cucurbits antagonize fungal and oomycete pathogens including powdery mildew. Front Microbiol 9:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan Z, Rehman A, Nisar MA et al (2017) Molecular basis of Cd+ 2 stress response in Candida tropicalis. Appl Microbiol Biotechnol 101(20):7715–7728

    Article  CAS  PubMed  Google Scholar 

  • Kharwar RN, Mishra A, Gond SK et al (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28(7):1208–1228

    Article  CAS  PubMed  Google Scholar 

  • Kharwar RN, Mishra A, Sharma VK et al (2014) Diversity and biopotential of endophytic fungal flora isolated from eight medicinal plants of Uttar Pradesh, India. In: Kharwar R, Upadhyay R, Dubey N, Raghuwanshi R (eds) Microbial diversity and biotechnology in food security. Springer, New Delhi, pp 23–39

    Google Scholar 

  • Krings M, Taylor TN, Hass H et al (2007) Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytol 174(3):648–657

    Article  PubMed  Google Scholar 

  • Leveille JH (1846) Considérations mycologiques, suivies d’une nouvelle classification des champignons. Imprimerie de I Martinet, Paris

    Book  Google Scholar 

  • Loebus J, Leitenmaier B, Meissner D et al (2013) The major function of a metallothionein from the aquatic fungus Heliscus lugdunensis is cadmium detoxification. J Inorg Biochem 127:253–260

    Article  CAS  PubMed  Google Scholar 

  • Lopez BR, Tinoco-Ojanguren C, Bacilio M et al (2012) Endophytic bacteria of the rock-dwelling cactus Mammillaria fraileana affect plant growth and mobilization of elements from rocks. Environ Exp Bot 81:26–36

    Article  CAS  Google Scholar 

  • López JL, Alvarez F, Príncipe A et al (2017) Isolation, taxonomic analysis, and phenotypic characterization of bacterial endophytes present in alfalfa (Medicago sativa) seeds. J Biotechnol 267:55–62

    Article  PubMed  CAS  Google Scholar 

  • Margaryan AA, Panosyan HH, Birkeland NK et al (2013) Heavy metal accumulation and the expression of the copA and nikA genes in Bacillus subtilis AG4 isolated from the Sotk Gold Mine in Armenia. Biol J Armenia 65(3):51–57

    CAS  Google Scholar 

  • Mastretta C, Taghavi S, Van Der Lelie D et al (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremed 11(3):251–267

    Article  CAS  Google Scholar 

  • Maude RB (1996) Seed-borne diseases and their control: principles and practice. CAB International, Wallingford

    Google Scholar 

  • Maynaud G, Brunel B, Mornico D et al (2013) Genome-wide transcriptional responses of two metal-tolerant symbiotic Mesorhizobium isolates to zinc and cadmium exposure. BMC Genom 14(1):292

    Article  CAS  Google Scholar 

  • Mendarte-Alquisira C, Gutiérrez-Rojas M, González-Márquez H et al (2017) Improved growth and control of oxidative stress in plants of Festuca arundinacea exposed to hydrocarbons by the endophytic fungus Lewia sp. Plant Soil 411(1–2):347–358

    Article  CAS  Google Scholar 

  • Moffat AS (1999) Engineering plants to cope with metals. Science 285:369–370

    Article  CAS  PubMed  Google Scholar 

  • Monnet F, Vaillant N, Hitmi A et al (2001) Endophytic Neotyphodium lolii induced tolerance to Zn stress in Lolium perenne. Physiol Plantarum 113(4):557–563

    Article  CAS  Google Scholar 

  • Mundt JO, Hinkle NF (1976) Bacteria within ovules and seeds. Appl Environ Microbiol 32(5):694–698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naveed M, Mitter B, Reichenauer TG et al (2014) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97:30–39

    Article  CAS  Google Scholar 

  • Nelson EB (2004) Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol 42:271–309

    Article  CAS  PubMed  Google Scholar 

  • Nelson EB (2018) The seed microbiome: origins, interactions, and impacts. Plant Soil 422(1–2):7–34

    Article  CAS  Google Scholar 

  • Ngugi HK, Scherm H (2006) Biology of flower-infecting fungi. Annu Rev Phytopathol 44:261–282

    Article  CAS  PubMed  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51(6):730–750

    Article  CAS  PubMed  Google Scholar 

  • Parmar S, Singh V (2015) Phytoremediation approaches for heavy metal pollution: a review. J Plant Sci Res 2(2):135

    Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews J, Hirano S (eds) Microbial ecology of leaves. Springer, New York, pp 179–197

    Chapter  Google Scholar 

  • Pitzschke A (2016) Developmental peculiarities and seed-borne endophytes in quinoa: omnipresent, robust bacilli contribute to plant fitness. Front Microbiol 7:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Pitzschke A (2018) Molecular dynamics in germinating, endophyte-colonized quinoa seeds. Plant Soil 422(1–2):135–154

    Article  CAS  PubMed  Google Scholar 

  • Puente ME, Li CY, Bashan Y (2009) Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environ Exp Bot 66(3):402–408

    Article  CAS  Google Scholar 

  • Qin Y, Pan X, Yuan Z (2016) Seed endophytic microbiota in a coastal plant and phytobeneficial properties of the fungus Cladosporium cladosporioides. Fungal Ecol 24:53–60

    Article  Google Scholar 

  • Radhakrishnan R, Khan AL, Lee IJ (2013) Endophytic fungal pre-treatments of seeds alleviates salinity stress effects in soybean plants. J Microbiol 51(6):850–857

    Article  CAS  PubMed  Google Scholar 

  • Roane TM, Pepper IL, Gentry TJ (2015) Microorganisms and metal pollutants. In: Pepper IL, Gerba CP, Gentry TJ (eds) Environmental Microbiology. Academic Press, Amsterdam, pp 415–439

    Chapter  Google Scholar 

  • Rudgers JA, Afkhami ME, Rúa MA et al (2009) A fungus among us: broad patterns of endophyte distribution in the grasses. Ecology 90(6):1531–1539

    Article  PubMed  Google Scholar 

  • Sánchez-López AS, Thijs S, Beckers B et al (2018) Community structure and diversity of endophytic bacteria in seeds of three consecutive generations of Crotalaria pumila growing on metal mine residues. Plant Soil 422(1–2):51–66

    Article  CAS  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109(6):661–686

    Article  PubMed  Google Scholar 

  • Selim KA, El-Beih AA, AbdEl-Rahman TM et al (2012) Biology of endophytic fungi. Curr Res Environ Appl Mycol 2(1):31–82

    Article  Google Scholar 

  • Shade A, Jacques MA, Barret M (2017) Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr Opin Microbiol 37:15–22

    Article  PubMed  Google Scholar 

  • Shahzad R, Waqas M, Khan AL et al (2016) Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol Biochem 106:236–243

    Article  CAS  PubMed  Google Scholar 

  • Shahzad R, Khan AL, Lee IJ (2018) What is there in seeds? Vertically transmitted endophytic resources for sustainable improvement in plant growth. Front Plant Sci 9:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Shearin ZR, Filipek M, Desai R et al (2018) Fungal endophytes from seeds of invasive, non-native Phragmites australis and their potential role in germination and seedling growth. Plant Soil 422(1–2):183–194

    Article  CAS  Google Scholar 

  • Sheibani-Tezerji R, Naveed M, Jehl MA et al (2015) The genomes of closely related Pantoea ananatis maize seed endophytes having different effects on the host plant differ in secretion system genes and mobile genetic elements. Front Microbiol 6:440

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen XY, Cheng YL, Cai CJ et al (2014) Diversity and antimicrobial activity of culturable endophytic fungi isolated from Moso bamboo seeds. PLoS One 9(4):e95838. https://doi.org/10.1371/journal.pone.0095838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen M, Zhao DK, Qiao Q et al (2015) Identification of glutathione S-transferase (GST) genes from a dark septate endophytic fungus (Exophiala pisciphila) and their expression patterns under varied metals stress. PLoS One 10(4):e0123418. https://doi.org/10.1371/journal.pone.0123418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shine AM, Shakya VP, Idnurm A (2015) Phytochelatin synthase is required for tolerating metal toxicity in a basidiomycete yeast and is a conserved factor involved in metal homeostasis in fungi. Fungal Biol Biotechnol 2(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  • Siegel MR, Latch GC (1991) Expression of antifungal activity in agar culture by isolates of grass endophytes. Mycologia 83:529–537

    Article  Google Scholar 

  • Siegel MR, Johnson MC, Varney DR et al (1984) A fungal endophyte in tall fescue: incidence and dissemination. Phytopathology 74(8):932–937

    Article  Google Scholar 

  • Singh D, Geat N, Rajawat MVS et al (2018) Deciphering the mechanisms of endophyte-mediated biofortification of Fe and Zn in wheat. J Plant Growth Regul 37(1):174–182

    Article  CAS  Google Scholar 

  • Smith SA, Tank DC, Boulanger LA et al (2008) Bioactive endophytes warrant intensified exploration and conservation. PLoS One 3(8):e3052. https://doi.org/10.1371/journal.pone.0003052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soleimani M, Hajabbasi MA, Afyuni M et al (2010) Effect of endophytic fungi on cadmium tolerance and bioaccumulation by Festuca arundinacea and Festuca pratensis. Int J Phytoremed 12(6):535–549

    Article  CAS  Google Scholar 

  • Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5(6):535–544

    Article  CAS  PubMed  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67(4):491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su C, Jiang L, Zhang W (2014) A review on heavy metal contamination in the soil worldwide: situation, impact and remediation techniques. Environ Skeptics Critics 3(2):24–38

    Google Scholar 

  • Sun Y, Wang Q, Lu X et al (2012) Endophytic fungal community in stems and leaves of plants from desert areas in China. Mycol Prog 11(3):781–790

    Article  Google Scholar 

  • Sundaramoorthy S, Balabaskar P (2013) Evaluation of combined efficacy of Pseudomonas fluorescens and Bacillus subtilis in managing tomato wilt caused by Fusarium oxysporum f. sp. lycopersici (Fol). Plant Pathol J 12(4):154–161

    Article  CAS  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18(4):448–459

    Article  CAS  PubMed  Google Scholar 

  • Tiller KG (1992) Urban soil contamination in Australia. Soil Res 30(6):937–957

    Article  CAS  Google Scholar 

  • Timmusk S, Paalme V, Pavlicek T et al (2011) Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS One 6(3):e17968. https://doi.org/10.1371/journal.pone.0017968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topalidis V, Harris A, Hardaway CJ et al (2017) Investigation of selected metals in soil samples exposed to agricultural and automobile activities in Macedonia, Greece using inductively coupled plasma-optical emission spectrometry. Microchem J 130:213–220

    Article  CAS  Google Scholar 

  • Truyens S, Weyens N, Cuypers A et al (2013) Changes in the population of seed bacteria of transgenerationally Cd-exposed Arabidopsis thaliana. Plant Biol 15(6):971–981

    Article  CAS  PubMed  Google Scholar 

  • Truyens S, Jambon I, Croes S et al (2014) The effect of long-term Cd and Ni exposure on seed endophytes of Agrostis capillaris and their potential application in phytoremediation of metal-contaminated soils. Int J Phytoremed 16(7–8):643–659

    Article  CAS  Google Scholar 

  • Truyens S, Weyens N, Cuypers A et al (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7(1):40–50

    Article  Google Scholar 

  • Truyens S, Beckers B, Thijs S et al (2016) Cadmium-induced and trans-generational changes in the cultivable and total seed endophytic community of Arabidopsis thaliana. Plant Biol 18(3):376–381

    Article  CAS  PubMed  Google Scholar 

  • Unger F (1833) Die Exantheme der Pflanzen und einige mit diesen verwandte Krankheiten der Gewächse. Carl Gerold, Wien, p 421

    Google Scholar 

  • Vandenkoornhuyse P, Quaiser A, Duhamel M et al (2015) The importance of the microbiome of the plant holobiont. New Phytol 206(4):1196–1206

    Article  PubMed  Google Scholar 

  • Vega FE, Simpkins A, Aime MC et al (2010) Fungal endophyte diversity in coffee plants from Colombia, Hawai’i, Mexico and Puerto Rico. Fungal Ecol 3(3):122–138

    Article  Google Scholar 

  • Verma VC, Kharwar RN, Strobel GA (2009) Chemical and functional diversity of natural products from plant associated endophytic fungi. Nat Prod Commun 4(11):1511–1532

    CAS  PubMed  Google Scholar 

  • Vujanovic V, Germida JJ (2017) Seed endosymbiosis: a vital relationship in providing prenatal care to plants. Can J Plant Sci 97(6):972–981

    Google Scholar 

  • Vujanovic V, St-Arnaud M, Barabé D et al (2000) Viability testing of orchid seed and the promotion of colouration and germination. Ann Bot 86(1):79–86

    Article  Google Scholar 

  • Walitang DI, Kim K, Madhaiyan M et al (2017) Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of Rice. BMC Microbiol 17(1):209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walitang DI, Kim CG, Jeon S et al (2018) Conservation and transmission of seed bacterial endophytes across generations following crossbreeding and repeated inbreeding of rice at different geographic locations. Microbiol Open. https://doi.org/10.1002/mbo3.662

  • Welty RE, Craig AM, Azevedo MD (1994) Variability of ergovaline in seeds and straw and endophyte infection in seeds among endophyte-infected genotypes of tall fescue. Plant Dis 78(9):845–849

    Article  CAS  Google Scholar 

  • West CP (1994) Physiology and drought tolerance of endophyte-infected grasses. In: Bacon CW, White JF Jr (eds) Biotechnology of endophytic fungi of grasses. CRC, Boca Raton, FL, pp 87–99

    Google Scholar 

  • Wiewióra B, Żurek G, Żurek M (2015) Endophyte-mediated disease resistance in wild populations of perennial ryegrass (Lolium perenne). Fungal Ecol 15:1–8

    Article  Google Scholar 

  • Wilkinson HH, Siegel MR, Blankenship JD et al (2000) Contribution of fungal loline alkaloids to protection from aphids in a grass-endophyte mutualism. Mol Plant Microbe Interact 13(10):1027–1033

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Huang H, Ling Z et al (2016) Genome sequencing reveals mechanisms for heavy metal resistance and polycyclic aromatic hydrocarbon degradation in Delftia lacustris strain LZ-C. Ecotoxicology 25(1):234–247

    Article  CAS  PubMed  Google Scholar 

  • Xie P, Hao X, Herzberg M et al (2015) Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in Northwest mine tailings, China. J Environ Sci 27:179–187

    Article  CAS  Google Scholar 

  • Zhang J, Huang W (2000) Advances on physiological and ecological effects of cadmium on plants. Acta Ecol Sin 20(3):514–523

    Google Scholar 

  • Zhang X, Fan X, Li C et al (2010) Effects of cadmium stress on seed germination, seedling growth and antioxidative enzymes in Achnatherum inebrians plants infected with a Neotyphodium endophyte. Plant Growth Regul 60(2):91–97

    Article  CAS  Google Scholar 

  • Zhang X, Lin L, Chen M et al (2012a) A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance. J Hazard Mater 229:361–370

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Li C, Nan Z (2012b) Effects of cadmium stress on seed germination and seedling growth of Elymus dahuricus infected with the Neotyphodium endophyte. Sci China Life Sci 55(9):793–799

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wei W, Tan R (2015) Symbionts, a promising source of bioactive natural products. Sci China Chem 58(7):1097–1109

    Article  CAS  Google Scholar 

  • Zhang J, Zhang C, Yang J et al (2018) Insights into endophytic bacterial community structures of seeds among various Oryza sativa L. rice genotypes. J Plant Growth Regul. https://doi.org/10.1007/s00344-018-9812-0

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, H., Parmar, S., Sharma, V.K., White, J.F. (2019). Seed Endophytes and Their Potential Applications. In: Verma, S., White, Jr, J. (eds) Seed Endophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-10504-4_3

Download citation

Publish with us

Policies and ethics