Skip to main content

Surface Modification of Nanoparticles for Targeted Drug Delivery

  • Chapter
  • First Online:
Surface Modification of Nanoparticles for Targeted Drug Delivery

Abstract

Over the course of recent years, nanoparticles have been the center of attention used to treat many health related diseases. Nanoparticles are used due to it being efficient and having the ability to overcome certain biological barrier such as tumor, malignant melanoma, and treating HIV. Nanoparticles are known to have many different manipulating structures and characteristics which gives these particles a huge advantage in treating cancer. Nanoparticles are also used in tumor suppression due to their extraordinary ability of modifying their cell surface. One of the other great advantages of nanoparticles is to treat malignant melanoma. Two of the main components used in malignant melanoma therapy is poly(ε-caprolactone) (PCL) and poly(ethylene glycol) (PEG). Both components being FDA approved, have extraordinary effects in drug delivery through nanotechnology if used in a conjugated manner. One of the barriers faced in malignant melanoma therapy is losing the ability to encapsulate and retain a drug if ligands on the surface adjust the chemical properties of the polymer, which can be overcome by the use of dopamine. Nanoparticles have been greatly advantageous in breaking through barrier of successful HIV therapy. To treat this retroviral disease, the use of solid lipid nanoparticles is made due to it being able to improve the long-term stability of colloidal nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chattopadhyay, S., Dash, S. K., Ghosh, T., Das, D., Pramanik, P., & Roy, S. (2013). Surface modification of cobalt oxide nanoparticles using phosphonomethyl iminodiacetic acid followed by folic acid: A biocompatible vehicle for targeted anticancer drug delivery. Cancer Nanotechnology, 4, 103–116.

    Article  Google Scholar 

  2. Parodi, A., Haddix, S. G., Taghipour, N., Scaria, S., Taraballi, F., Cevenini, A., Yazdi, I. K., Corbo, C., Palomba, R., Khaled, S. Z., et al. (2014). Bromelain surface modification increases the diffusion of silica nanoparticles in the tumor extracellular matrix. ACS Nano, 8, 9874–9883.

    Article  CAS  Google Scholar 

  3. Xiong, W., Peng, L., Chen, H., & Li, Q. (2015). Surface modification of mpeg-b-pcl-based nanoparticles via oxidative self-polymerization of dopamine for malignant melanoma therapy. International Journal of Nanomedicine, 10, 2985–2996.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bhatt, P., Lalani, R., Vhora, I., Patil, S., Amrutiya, J., Misra, A., & Mashru, R. (2018). Liposomes encapsulating native and cyclodextrin enclosed paclitaxel: Enhanced loading efficiency and its pharmacokinetic evaluation. International Journal of Pharmaceutics, 536, 95–107.

    Article  CAS  Google Scholar 

  5. Hemal Tandel, P. B., Jain, K., Shahiwala, A., & Misra, A. (2019). Vitro and in-vivo tools in emerging drug delivery scenario: Challenges and updates. In A. E. Misra & A. Shahiwala (Eds.), In-vitro and in-vivo tools in drug delivery research for optimum clinical outcomes. Boca Raton: CRC.

    Google Scholar 

  6. Shegokar, R., & Singh, K. K. (2012). Preparation, characterization and cell based delivery of stavudine surface modified lipid nanoparticles. Journal of Nanomedicine and Biotherapeutic Discovery, 2, 105. https://doi.org/10.4172/2155-983X.1000105.

    Article  CAS  Google Scholar 

  7. Patel, J., Amrutiya, J., Bhatt, P., Javia, A., Jain, M., & Misra, A. (2018). Targeted delivery of monoclonal antibody conjugated docetaxel loaded plga nanoparticles into egfr overexpressed lung tumour cells. Journal of Microencapsulation, 35, 204–217.

    Article  CAS  Google Scholar 

  8. Yewale, C., Baradia, D., Patil, S., Bhatt, P., Amrutiya, J., Gandhi, R., Kore, G., & Misra, A. (2018). Docetaxel loaded immunonanoparticles delivery in EGFR overexpressed breast carcinoma cells. Journal of Drug Delivery Science and Technology, 45, 334–345.

    Article  CAS  Google Scholar 

  9. Bhatt, P., Lalani, R., Mashru, R., & Misra, A. (2016). Abstract 2065: Anti-FSHR antibody fab’ fragment conjugated immunoliposomes loaded with cyclodextrin-paclitaxel complex for improved in vitro efficacy on ovarian cancer cells. Cancer Research, 76, 2065.

    Article  Google Scholar 

  10. Bhatt, P., Vhora, I., Patil, S., Amrutiya, J., Bhattacharya, C., Misra, A., & Mashru, R. (2016). Role of antibodies in diagnosis and treatment of ovarian cancer: Basic approach and clinical status. Journal of Controlled Release: Official Journal of the Controlled Release Society, 226, 148–167.

    Article  CAS  Google Scholar 

  11. Ahmad, I. Z., Kuddus, M., Tabassum, H., Ahmad, A., & Mabood, A. (2017). Advancements in applications of surface modified nanomaterials for cancer theranostics. Current Drug Metabolism, 18, 983–999.

    Article  CAS  Google Scholar 

  12. Knop, K., Stumpf, S., & Schubert, U. S. (2013). Drugs as matrix to detect their own drug delivery system of peg-b-pcl block copolymers in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry: RCM, 27, 2201–2212.

    Article  CAS  Google Scholar 

  13. Morcos, B., Lecante, P., Morel, R., Haumesser, P.-H., & Santini, C. C. (2018). Magnetic, structural, and chemical properties of cobalt nanoparticles synthesized in ionic liquids. Langmuir, 34, 7086–7095.

    Article  CAS  Google Scholar 

  14. Chattopadhyay, S., Chakraborty, S. P., Laha, D., Baral, R., Pramanik, P., & Roy, S. (2012). Surface-modified cobalt oxide nanoparticles: New opportunities for anti-cancer drug development. Cancer Nanotechnology, 3, 13–23.

    Article  CAS  Google Scholar 

  15. Salazar, M. D., & Ratnam, M. (2007). The folate receptor: What does it promise in tissue-targeted therapeutics? Cancer Metastasis Reviews, 26, 141–152.

    Article  CAS  Google Scholar 

  16. Antony, A. C. (1996). Folate receptors. Annual Review of Nutrition, 16, 501–521.

    Article  CAS  Google Scholar 

  17. Chobotova, K., Vernallis, A. B., & Majid, F. A. (2010). Bromelain’s activity and potential as an anti-cancer agent: Current evidence and perspectives. Cancer Letters, 290, 148–156.

    Article  CAS  Google Scholar 

  18. Pavan, R., Jain, S., Shraddha, & Kumar, A. (2012). Properties and therapeutic application of bromelain: A review. Biotechnology Research International, 2012, 6.

    Article  Google Scholar 

  19. Rathnavelu, V., Alitheen, N. B., Sohila, S., Kanagesan, S., & Ramesh, R. (2016). Potential role of bromelain in clinical and therapeutic applications. Biomedical Reports, 5, 283–288.

    Article  CAS  Google Scholar 

  20. Mynott, T. L., Ladhams, A., Scarmato, P., & Engwerda, C. R. B. (1999). From pineapple stems, proteolytically blocks activation of extracellular regulated kinase-2 in t cells. Journal of Immunology, 163, 2568–2575.

    CAS  Google Scholar 

  21. Orsini, R. A. (2006). Bromelain. Plastic and Reconstructive Surgery, 118, 1640–1644.

    Article  CAS  Google Scholar 

  22. Barbé, C., Bartlett, J., Kong, L., Finnie, K., Lin, H. Q., Larkin, M., Calleja, S., Bush, A., & Calleja, G. (1959-1966). Silica particles: A novel drug-delivery system. Advanced Materials, 2004, 16.

    Google Scholar 

  23. Ma, B., He, L., You, Y., Mo, J., & Chen, T. (2018). Controlled synthesis and size effects of multifunctional mesoporous silica nanosystem for precise cancer therapy. Drug Delivery, 25, 293–306.

    Article  CAS  Google Scholar 

  24. Kanapathipillai, M., Brock, A., & Ingber, D. E. (2014). Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment. Advanced Drug Delivery Reviews, 79-80, 107–118.

    Article  CAS  Google Scholar 

  25. Villegas, M. R., Baeza, A., & Vallet-Regí, M. (2015). Hybrid collagenase nanocapsules for enhanced nanocarrier penetration in tumoral tissues. ACS Applied Materials and Interfaces, 7, 24075–24081.

    Article  CAS  Google Scholar 

  26. Vhora, I., Patil, S., Bhatt, P., Gandhi, R., Baradia, D., & Misra, A. (2014). Receptor-targeted drug delivery: Current perspective and challenges. Therapeutic Delivery, 5, 1007–1024.

    Article  CAS  Google Scholar 

  27. Zhang, W., He, J., Liu, Z., Ni, P., & Zhu, X. (2010). Biocompatible and ph-responsive triblock copolymer mpeg-b-pcl-b-pdmaema: Synthesis, self-assembly, and application. Journal of Polymer Science Part A: Polymer Chemistry, 48, 1079–1091.

    Article  CAS  Google Scholar 

  28. Li, F., Meng, J., Ye, J., Yang, B., Tian, Q., & Deng, C. (2014). Surface modification of pes ultrafiltration membrane by polydopamine coating and poly(ethylene glycol) grafting: Morphology, stability, and anti-fouling. Desalination, 344, 422–430.

    Article  CAS  Google Scholar 

  29. Yang, K., Lee, J. S., Kim, J., Lee, Y. B., Shin, H., Um, S. H., Kim, J. B., Park, K. I., Lee, H., & Cho, S. W. (2012). Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering. Biomaterials, 33, 6952–6964.

    Article  CAS  Google Scholar 

  30. Park, J., Brust, T. F., Lee, H. J., Lee, S. C., Watts, V. J., & Yeo, Y. (2014). Polydopamine-based simple and versatile surface modification of polymeric nano drug carriers. ACS Nano, 8, 3347–3356.

    Article  CAS  Google Scholar 

  31. Postma, A., Yan, Y., Wang, Y., Zelikin, A. N., Tjipto, E., & Caruso, F. (2009). Self-polymerization of dopamine as a versatile and robust technique to prepare polymer capsules. Chemistry of Materials, 21, 3042–3044.

    Article  CAS  Google Scholar 

  32. Cho, K., Wang, X., Nie, S., Chen, Z. G., & Shin, D. M. (2008). Therapeutic nanoparticles for drug delivery in cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 14, 1310–1316.

    Article  CAS  Google Scholar 

  33. Heiati, H., Tawashi, R., Shivers, R. R., & Phillips, N. C. (1997). Solid lipid nanoparticles as drug carriers. I. Incorporation and retention of the lipophilic prodrug 3′-azido-3′-deoxythymidine palmitate. International Journal of Pharmaceutics, 146, 123–131.

    Article  CAS  Google Scholar 

  34. Gunaseelan, S., Gunaseelan, K., Deshmukh, M., Zhang, X., & Sinko, P. J. (2010). Surface modifications of nanocarriers for effective intracellular delivery of anti-HIV drugs. Advanced Drug Delivery Reviews, 62, 518–531.

    Article  CAS  Google Scholar 

  35. Sharma, A., Sharma, S., & Khuller, G. K. (2004). Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. The Journal of Antimicrobial Chemotherapy, 54, 761–766.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashwant V Pathak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, P. et al. (2019). Surface Modification of Nanoparticles for Targeted Drug Delivery. In: Pathak, Y. (eds) Surface Modification of Nanoparticles for Targeted Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-030-06115-9_2

Download citation

Publish with us

Policies and ethics