Skip to main content

Polylactic Acid (PLA)-Based Nanocomposites: Processing and Properties

  • Chapter
  • First Online:
Bio-based Polymers and Nanocomposites

Abstract

Polylactic acid (PLA) is the most comprehensively explored biodegradable and renewable thermoplastic polyester. It has the capacity to substitute polymers from fossil fuel-based resources. However, certain properties such as uncontrolled degradation, poor thermal properties, gas permeability, and profound brittleness characteristic may restrict the wide-scale utilization of PLA. Consequently, nano-based reinforcements have been widely exploited to upgrade some of the shortcomings. With the advancement in the field of nanotechnology, PLA nanocomposites have emerged as an excellent material. These materials have a big potential for applications in food packaging, medical applications, and tissue cultures. This chapter mainly assesses the different types of nanocomposites from PLA in terms of reinforcing materials. The resultant composite structures are correlated for different processing methods with the quality and factors of dispersion of reinforcements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albertsson AC, Karlsson S (1994) Chemistry and biochemistry of polymer biodegradation. In: Griffin GJL (ed) Chemistry and technology of biodegradable polymers. Blackie, Glasgow, p 7

    Chapter  Google Scholar 

  • Ali SAM, Doherty PJ, Williams DF (1994) The mechanisms of oxidative degradation of biomedical polymers by free radicals. J Appl Polym Sci 51(8):1389–1398

    Article  Google Scholar 

  • Anderson KS, Schreck KM, Hillmyer MA (2008) Toughening polylactide. Polym Rev 48(1):85–108

    Article  Google Scholar 

  • Anžlovar A, Kržan A, Žagar E (2018) Degradation of PLA/ZnO and PHBV/ZnO composites prepared by melt processing. Arab J Chem 11(3):343–352

    Article  Google Scholar 

  • Athanasiou KA, Niederauer GG, Agrawal CM (1996) Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17(2):93–102

    Article  Google Scholar 

  • Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4(9):835–864

    Article  Google Scholar 

  • Babu RP, O’connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2(1):8

    Article  Google Scholar 

  • Bergsma JE, Rozema FR, Bos RRM, Boering G, de Bruijn WC (2006) Late degradation tissue response to poly(l-lactide) bone plates and screws. In: The biomaterials: silver jubilee compendium, pp 101–107

    Chapter  Google Scholar 

  • Burg KJL, Holder WD, Culberson CR, Beiler RJ, Greene KG, Loebsack AB et al (1999) Parameters affecting cellular adhesion to polylactide films. J Biomater Sci Polym Ed 10(2):147–161

    Article  Google Scholar 

  • Bussiere PO, Therias S, Gardette JL, Murariu M, Dubois P, Baba M (2012) Effect of ZnO nanofillers treated with triethoxy caprylylsilane on the isothermal and non-isothermal crystallization of poly(lactic acid). Phys Chem Chem Phys 14(35):12301–12308

    Article  Google Scholar 

  • Cai R, Kubota Y, Fujishima A (2003) Effect of copper ions on the formation of hydrogen peroxide from photocatalytic titanium dioxide particles. J Catal 219(1):214–218

    Article  Google Scholar 

  • Carus M, Carrez D, Kaeb H, Venus J (2011). Level playing field for bio-based chemistry and materials. Nova Institute, pp 04–18

    Google Scholar 

  • Chen S, Feng J, Guo X, Hong J, Ding W (2005) One-step wet chemistry for preparation of magnetite nanorods. Mater Lett 59(8–9):985–988

    Article  Google Scholar 

  • Chen C, Lv G, Pan C, Song M, Wu C, Guo D et al (2007) Poly(lactic acid)(PLA) based nanocomposites—a novel way of drug-releasing. Biomed Mater 2(4):L1

    Article  Google Scholar 

  • Chen BK, Shen CH, Chen SC, Chen AF (2010) Ductile PLA modified with methacryloyloxyalkyl isocyanate improves mechanical properties. Polymer 51(21):4667–4672

    Article  Google Scholar 

  • Chen BK, Shen CH, Chen AF (2012) Preparation of ductile PLA materials by modification with trimethyl hexamethylene diisocyanate. Polym Bull 69(3):313–322

    Article  Google Scholar 

  • Chiang MF, Wu TM (2010) Synthesis and characterization of biodegradable poly(l-lactide)/layered double hydroxide nanocomposites. Compos Sci Technol 70(1):110–115

    Article  Google Scholar 

  • Chiu WM, Chang YA, Kuo HY, Lin MH, Wen HC (2008) A study of carbon nanotubes/biodegradable plastic polylactic acid composites. J Appl Polym Sci 108(5):3024–3030

    Article  Google Scholar 

  • Chow TS (1978) Effect of particle shape at finite concentration on the elastic moduli of filled polymers. J Polym Sci Polym Phys Ed 16(6):959–965

    Article  Google Scholar 

  • Costa FR, Saphiannikova M, Wagenknecht U, Heinrich G (2007) Layered double hydroxide based polymer nanocomposites. In: Wax crystal control nanocomposites stimuli-responsive polymers. Springer, Berlin, pp 101–168

    Google Scholar 

  • Cumkur EA, Baouz T, Yilmazer U (2015) Poly(lactic acid)–layered silicate nanocomposites: the effects of modifier and compatibilizer on the morphology and mechanical properties. J Appl Polym Sci 132(38)

    Article  Google Scholar 

  • Dash S, Mishra S, Patel S, Mishra BK (2008) Organically modified silica: synthesis and applications due to its surface interaction with organic molecules. Adv Coll Interface Sci 140(2):77–94

    Article  Google Scholar 

  • Dhar P, Kumar A, Katiyar V (2016) Magnetic cellulose nanocrystal based anisotropic polylactic acid nanocomposite films: influence on electrical, magnetic, thermal, and mechanical properties. ACS Appl Mater Interfaces 8(28):18393–18409

    Article  Google Scholar 

  • Dorgan JR, Lehermeier H, Mang M (2000) Thermal and rheological properties of commercial-grade poly(lactic acid)s. J Polym Environ 8(1):1–9

    Article  Google Scholar 

  • Dorgan JR, Lehermeier HJ, Palade LI, Cicero J (2001) Polylactides: properties and prospects of an environmentally benign plastic from renewable resources. In: Macromolecular symposia, vol 175, no 1. WILEY‐VCH Verlag GmbH, Weinheim, pp 55–66

    Article  Google Scholar 

  • Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12(23):1841–1846

    Article  Google Scholar 

  • Eling B, Gogolewski S, Pennings AJ (1982) Biodegradable materials of poly(l-lactic acid): 1. Melt-spun and solution-spun fibres. Polymer 23(11):1587–1593

    Article  Google Scholar 

  • Fina A, Monticelli O, Camino G (2010) POSS-based hybrids by melt/reactive blending. J Mater Chem 20(42):9297–9305

    Article  Google Scholar 

  • Fukushima K, Murariu M, Camino G, Dubois P (2010) Effect of expanded graphite/layered-silicate clay on thermal, mechanical and fire retardant properties of poly(lactic acid). Polym Degrad Stab 95(6):1063–1076

    Article  Google Scholar 

  • Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9(2):63–84

    Article  Google Scholar 

  • Ghanbari H, Cousins BG, Seifalian AM (2011) A nanocage for nanomedicine: polyhedral oligomeric silsesquioxane (POSS). Macromol Rapid Commun 32(14):1032–1046

    Article  Google Scholar 

  • Gordobil O, Egüés I, Llano-Ponte R, Labidi J (2014) Physicochemical properties of PLA lignin blends. Polym Degrad Stab 108:330–338

    Article  Google Scholar 

  • Gu SY, Zou CY, Zhou K, Ren J (2009) Structure-rheology responses of polylactide/calcium carbonate composites. J Appl Polym Sci 114(3):1648–1655

    Article  Google Scholar 

  • Gupta B, Revagade N, Hilborn J (2007) Poly(lactic acid) fiber: an overview. Prog Polym Sci 32(4):455–482

    Article  Google Scholar 

  • Hiljanen-Vainio M, Varpomaa P, Seppälä J, Törmälä P (1996) Modification of poly(l-lactides) by blending: mechanical and hydrolytic behavior. Macromol Chem Phys 197(4):1503–1523

    Article  Google Scholar 

  • Hoque ME, Hutmacher DW, Feng W, Li S, Huang MH, Vert M, Wong YS (2005) Fabrication using a rapid prototyping system and in vitro characterization of PEG-PCL-PLA scaffolds for tissue engineering. J Biomater Sci Polym Ed 16(12):1595–1610

    Article  Google Scholar 

  • Hoque ME, Ye TJ, Yong LC, Dahlan KM (2013a) Sago starch-mixed low-density polyethylene (LDPE) biodegradable polymer: synthesis and characterization. J Mater Article ID 365380, 7 pages. https://doi.org/10.1155/2013/365380

    Article  Google Scholar 

  • Hoque MdE, Shehryar M, Nurul Islam KMD (2013b) Processing and characterization of cockle shell calcium carbonate (CaCO3) bioceramic for potential application in bone tissue engineering. J Mater Sci Eng 2(4):132

    Google Scholar 

  • Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Compos Sci Technol 68(2):424–432

    Article  Google Scholar 

  • Hutmacher DW, Hoque ME, Wong YS (2008) Design, fabrication and physical characterization of scaffolds made from biodegradable synthetic polymers in combination with RP systems based on melt extrusion. In: Bidanda B, Bartolo P (eds) virtual prototyping & bio manufacturing in medical applications. Springer, USA

    Google Scholar 

  • Ikada Y, Tsuji H (2000) Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun 21(3):117–132

    Article  Google Scholar 

  • Incardona SD, Fambri L, Migliaresi C (1996) Poly-l-lactic acid braided fibres produced by melt spinning: characterization and in vitro degradation. J Mater Sci Mater Med 7(7):387–391

    Article  Google Scholar 

  • Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68(9):2103–2106

    Article  Google Scholar 

  • Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70(12):1742–1747

    Article  Google Scholar 

  • Katiyar V, Gerds N, Koch CB, Risbo J, Hansen HCB, Plackett D (2010) Poly l-lactide-layered double hydroxide nanocomposites via in situ polymerization of l-lactide. Polym Degrad Stab 95(12):2563–2573

    Article  Google Scholar 

  • Katiyar V, Gerds N, Koch CB, Risbo J, Hansen HCB, Plackett D (2011) Melt processing of poly(l-lactic acid) in the presence of organomodified anionic or cationic clays. J Appl Polym Sci 122(1):112–125

    Article  Google Scholar 

  • Kawakami Y, Kakihana Y, Miyazato A, Tateyama S, Hoque MA (2010) Polyhedral oligomeric silsesquioxanes with controlled structure: formation and application in new Si-based polymer systems. In: Silicon polymers. Springer, Berlin, pp 185–228

    Chapter  Google Scholar 

  • Kimura Y, Shirotani K, Yamane H, Kitao T (1988) Ring-opening polymerization of 3 (S)-[(benzyloxycarbonyl) methyl]-1, 4-dioxane-2, 5-dione: a new route to a poly(alpha-hydroxy acid) with pendant carboxyl groups. Macromolecules 21(11):3338–3340

    Article  Google Scholar 

  • Krikorian V, Pochan DJ (2004) Unusual crystallization behavior of organoclay reinforced poly(l-lactic acid) nanocomposites. Macromolecules 37(17):6480–6491

    Article  Google Scholar 

  • Kumar V, Dev A, Gupta AP (2014) Studies of poly(lactic acid) based calcium carbonate nanocomposites. Compos B Eng 56:184–188

    Article  Google Scholar 

  • Kuo SW, Chang FC (2011) POSS related polymer nanocomposites. Prog Polym Sci 36(12):1649–1696

    Article  Google Scholar 

  • Lagarón JM, Cabedo L (2014) Polylactide (PLA)/clay nano-biocomposites. Poly(lactic acid) science and technology: processing, properties, additives and applications, no 12, p 215

    Google Scholar 

  • Lai SM, Wu SH, Lin GG, Don TM (2014) Unusual mechanical properties of melt-blended poly(lactic acid)(PLA)/clay nanocomposites. Eur Polym J 52:193–206

    Article  Google Scholar 

  • Li Y, Chen C, Li J, Sun XS (2011) Synthesis and characterization of bionanocomposites of poly(lactic acid) and TiO2 nanowires by in situ polymerization. Polymer 52(11):2367–2375

    Article  Google Scholar 

  • Li Y, Han C, Zhang X, Xu K, Bian J, Dong L (2014) Poly(l-lactide)/Poly(d-lactide)/clay nanocomposites: enhanced dispersion, crystallization, mechanical properties, and hydrolytic degradation. Polym Eng Sci 54(4):914–924

    Article  Google Scholar 

  • Liang RP, Yao GH, Fan LX, Qiu JD (2012) Magnetic Fe3O4@ Au composite-enhanced surface plasmon resonance for ultrasensitive detection of magnetic nanoparticle-enriched α-fetoprotein. Anal Chim Acta 737:22–28

    Article  Google Scholar 

  • Liang JZ, Zhou L, Tang CY, Tsui CP (2013) Crystalline properties of poly(l-lactic acid) composites filled with nanometer calcium carbonate. Compos B Eng 45(1):1646–1650

    Article  Google Scholar 

  • Liao R, Yang B, Yu W, Zhou C (2007) Isothermal cold crystallization kinetics of polylactide/nucleating agents. J Appl Polym Sci 104(1):310–317

    Article  Google Scholar 

  • Linnemann B, Sri Harwoko M, Gries T (2003) Polylactide fibers (PLA). Chem Fibers Int 53(6):426–433

    Google Scholar 

  • Luo YB, Li WD, Wang XL, Xu DY, Wang YZ (2009) Preparation and properties of nanocomposites based on poly (lactic acid) and functionalized TiO2. Acta Mater 57(11):3182–3191

    Article  Google Scholar 

  • Luo Y, Cao Y, Guo G (2018) Effects of TiO2 nanoparticles on the photodegradation of poly (lactic acid). J Appl Polym Sci 135(30):46509

    Article  Google Scholar 

  • Malinowski R, Janczak K, Rytlewski P, Raszkowska-Kaczor A, Moraczewski K, Żuk T (2015) Influence of glass microspheres on selected properties of polylactide composites. Compos B Eng 76:13–19

    Article  Google Scholar 

  • Mandal S, Tichit D, Lerner DA, Marcotte N (2009) Azoic dye hosted in layered double hydroxide: physicochemical characterization of the intercalated materials. Langmuir 25(18):10980–10986

    Article  Google Scholar 

  • Manzi-Nshuti C, Songtipya P, Manias E, Jimenez-Gasco MM, Hossenlopp JM, Wilkie CA (2009) Polymer nanocomposites using zinc aluminum and magnesium aluminum oleate layered double hydroxides: effects of LDH divalent metals on dispersion, thermal, mechanical and fire performance in various polymers. Polymer 50(15):3564–3574

    Article  Google Scholar 

  • Martin O, Averous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42(14):6209–6219

    Article  Google Scholar 

  • Meng B, Tao J, Deng J, Wu Z, Yang M (2011) Toughening of polylactide with higher loading of nano-titania particles coated by poly (ε-caprolactone). Mater Lett 65(4):729–732

    Article  Google Scholar 

  • Michael FM, Khalid M, Walvekar R, Ratnam CT, Ramarad S, Siddiqui H, Hoque ME (2016) Effect of nanofillers on the physico-mechanical properties of load bearing bone implants. Mater Sci Eng C 67:792–806

    Article  Google Scholar 

  • Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205

    Article  Google Scholar 

  • Mu B, Tang J, Zhang L, Wang A (2017) Facile fabrication of superparamagnetic graphene/polyaniline/Fe3O4 nanocomposites for fast magnetic separation and efficient removal of dye. Sci Rep 7(1):5347

    Article  Google Scholar 

  • Murariu M, Dechief AL, Bonnaud L, Gallos A, Fontaine G, Bourbigot S, Dubois P (2010) The production and properties of polylactide composites filled with expanded graphite. Polym Degrad Stab 95(5):889–900

    Article  Google Scholar 

  • Murariu M, Doumbia A, Bonnaud L, Dechief AL, Paint Y, Ferreira M et al (2011) High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties. Biomacromolecules 12(5):1762–1771

    Article  Google Scholar 

  • Nakagaito AN, Fujimura A, Sakai T, Hama Y, Yano H (2009) Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Compos Sci Technol 69(7–8):1293–1297

    Article  Google Scholar 

  • Nakayama N, Hayashi T (2007) Preparation and characterization of poly(l-lactic acid)/TiO2 nanoparticle nanocomposite films with high transparency and efficient photodegradability. Polym Degrad Stab 92(7):1255–1264

    Article  Google Scholar 

  • Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Biores Technol 101(22):8493–8501

    Article  Google Scholar 

  • Navarro MELBA, Ginebra MP, Planell JA, Barrias CC, Barbosa MA (2005) In vitro degradation behavior of a novel bioresorbable composite material based on PLA and a soluble CaP glass. Acta Biomater 1(4):411–419

    Article  Google Scholar 

  • Nekhamanurak B, Patanathabutr P, Hongsriphan N (2012a) Thermal–mechanical property and fracture behaviour of plasticised PLA–CaCO3 nanocomposite. Plast Rubber Compos 41(4–5):175–179

    Article  Google Scholar 

  • Nekhamanurak YB, Patanathabutr P, Hongsriphan N (2012b) Mechanical properties of hydrophilicity modified CaCO3-poly(lactic acid) nanocomposite. Int J Appl Phys Math 2(2):98

    Article  Google Scholar 

  • Okada M (2002) Chemical syntheses of biodegradable polymers. Prog Polym Sci 27(1):87–133

    Article  MathSciNet  Google Scholar 

  • Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66(15):2776–2784

    Article  Google Scholar 

  • Pal N, Dubey P, Gopinath P, Pal K (2017) Combined effect of cellulose nanocrystal and reduced graphene oxide into poly-lactic acid matrix nanocomposite as a scaffold and its anti-bacterial activity. Int J Biol Macromol 95:94–105

    Article  Google Scholar 

  • Pantani R, Gorrasi G, Vigliotta G, Murariu M, Dubois P (2013) PLA-ZnO nanocomposite films: water vapor barrier properties and specific end-use characteristics. Eur Polymer J 49(11):3471–3482

    Article  Google Scholar 

  • Parida SK, Dash S, Patel S, Mishra BK (2006) Adsorption of organic molecules on silica surface. Adv Coll Interface Sci 121(1–3):77–110

    Article  Google Scholar 

  • Paul MA, Delcourt C, Alexandre M, Degée P, Monteverde F, Rulmont A, Dubois P (2005) (Plasticized) polylactide/(organo-) clay nanocomposites by in situ intercalative polymerization. Macromol Chem Phys 206(4):484–498

    Article  Google Scholar 

  • Prasad J, Singh AK, Shah J, Kotnala RK, Singh K (2018) Synthesis of MoS2-reduced graphene oxide/Fe3O4 nanocomposite for enhanced electromagnetic interference shielding effectiveness. Mater Res Express 5(5):055028

    Article  Google Scholar 

  • Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38(10–11):1504–1542

    Article  Google Scholar 

  • Rasal, R. M., & Hirt, D. E. (2009). Toughness decrease of PLA‐PHBHHx blend films upon surface‐confined photopolymerization. J Biomed Mater Res Part A Official J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 88(4):1079–1086

    Article  Google Scholar 

  • Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35(3):338–356

    Article  Google Scholar 

  • Ratner BD (1995) Surface modification of polymers: chemical, biological and surface analytical challenges. Biosens Bioelectron 10(9–10):797–804

    Article  Google Scholar 

  • Razzaq MY, Behl M, Lendlein A (2012) Magnetic memory effect of nanocomposites. Adv Func Mater 22(1):184–191

    Article  Google Scholar 

  • Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37(12):1657–1677

    Article  Google Scholar 

  • Sajjadi M, Nasrollahzadeh M, Sajadi SM (2017) Green synthesis of Ag/Fe3O4 nanocomposite using Euphorbia peplus Linn leaf extract and evaluation of its catalytic activity. J Colloid Interface Sci 497:1–13

    Article  Google Scholar 

  • Sawyer DJ (2003) Bioprocessing–no longer a field of dreams. In: Macromolecular symposia, vol 201, no 1. WILEY‐VCH Verlag, Weinheim, pp 271–282

    Article  MathSciNet  Google Scholar 

  • Schugens CH, Grandfils CH, Jérôme R, Teyssie PH, Delree P, Martin D et al (1995). Preparation of a macroporous biodegradable polylactide implant for neuronal transplantation. J Biomed Mater Res 29(11):1349–1362

    Article  Google Scholar 

  • Shabanian M, Khoobi M, Hemati F, Khonakdar HA, Wagenknecht U, Shafiee A (2015) New PLA/PEI-functionalized Fe3O4 nanocomposite: preparation and characterization. J Ind Eng Chem 24:211–218

    Article  Google Scholar 

  • Shi N, Cai J, Dou Q (2013) Crystallization, morphology and mechanical properties of PLA/PBAT/CaCO3 composites. In: Advanced materials research, vol 602. Trans Tech Publications, Switzerland, pp 768–771

    Google Scholar 

  • Sinha Ray S, Yamada K, Okamoto M, Ueda K (2002) Polylactide-layered silicate nanocomposite: a novel biodegradable material. Nano Lett 2(10):1093–1096

    Article  Google Scholar 

  • Spiridon I, Leluk K, Resmerita AM, Darie RN (2015) Evaluation of PLA–lignin bioplastics properties before and after accelerated weathering. Compos B Eng 69:342–349

    Article  Google Scholar 

  • Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69(7–8):1187–1192

    Article  Google Scholar 

  • Taccola S, Desii A, Pensabene V, Fujie T, Saito A, Takeoka S et al (2011) Free-standing poly(l-lactic acid) nanofilms loaded with superparamagnetic nanoparticles. Langmuir 27(9):5589–5595

    Article  Google Scholar 

  • Tehrani MA, Akbari A, Majumder M (2014) Polylactic acid (PLA) layered silicate nanocomposites. In: Handbook of polymernanocomposites. Processing, performance and application. Springer, Berlin, pp 53–67

    Google Scholar 

  • Tingaut P, Zimmermann T, Lopez-Suevos F (2009) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11(2):454–464

    Article  Google Scholar 

  • Vallet‐Regí M, Granado S, Arcos D, Gordo M, Cabanas MV, Ragel CV et al (1998) Preparation, characterization, and in vitro release of ibuprofen from Al2O3/PLA/PMMA composites. J Biomed Mater Res Official J Soc Biomater Jpn Soc Biomater Aust Soc Biomater 39(3):423–428

    Article  Google Scholar 

  • Vink ET, Rabago KR, Glassner DA, Gruber PR (2003) Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polym Degrad Stab 80(3):403–419

    Article  Google Scholar 

  • Vink ET, Glassner DA, Kolstad JJ, Wooley RJ, O’Connor RP (2007) The eco-profiles for current and near-future NatureWorks® polylactide (PLA) production. Ind Biotechnol 3(1):58–81

    Article  Google Scholar 

  • Wen X, Zhang K, Wang Y, Han L, Han C, Zhang H et al (2011) Study of the thermal stabilization mechanism of biodegradable poly(l‐lactide)/silica nanocomposites. Polym Int 60(2):202–210

    Article  Google Scholar 

  • Wu J, Mather PT (2009) POSS polymers: physical properties and biomaterials applications. Polym Rev 49(1):25–63. https://doi.org/10.1080/15583720802656237

    Article  Google Scholar 

  • Xia Y, Fang J, Li P, Zhang B, Yao H, Chen J et al (2017) Solution-processed highly superparamagnetic and conductive PEDOT: PSS/Fe3O4 nanocomposite films with high transparency and high mechanical flexibility. ACS Appl Mater Interfaces 9(22):19001–19010

    Article  Google Scholar 

  • Yan S, Yin J, Yang Y, Dai Z, Ma J, Chen X (2007) Surface-grafted silica linked with l-lactic acid oligomer: a novel nanofiller to improve the performance of biodegradable poly(l-lactide). Polymer 48(6):1688–1694

    Article  Google Scholar 

  • Zheng X, Zhou S, Xiao Y, Yu X, Li X, Wu P (2009) Shape memory effect of poly(d, l-lactide)/Fe3O4 nanocomposites by inductive heating of magnetite particles. Colloids Surf B 71(1):67–72

    Article  Google Scholar 

  • Zhu A, Diao H, Rong Q, Cai A (2010) Preparation and properties of polylactide–silica nanocomposites. J Appl Polym Sci 116(5):2866–2873

    Google Scholar 

  • Zhuang W, Liu J, Zhang JH, Hu BX, Shen J (2009) Preparation, characterization, and properties of TiO2/PLA nanocomposites by in situ polymerization. Polym Compos 30(8):1074–1080

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Enamul Hoque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharif, A., Mondal, S., Hoque, M.E. (2019). Polylactic Acid (PLA)-Based Nanocomposites: Processing and Properties. In: Sanyang, M., Jawaid, M. (eds) Bio-based Polymers and Nanocomposites . Springer, Cham. https://doi.org/10.1007/978-3-030-05825-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05825-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05824-1

  • Online ISBN: 978-3-030-05825-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics