Skip to main content

Polylactic Acid-Based Nanocomposites: An Important Class of Biodegradable Composites

  • Chapter
  • First Online:
Green Biopolymers and their Nanocomposites

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

This chapter discusses the different classes of polylactic acid-based nanocomposites, their structure-property relationships and their wide range of potential applications in the various fields such as biomedical, food packaging, automobiles, agriculture and renewable sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdullah N, Kamarudin SK (2015) Titanium dioxide in fuel cell technology: an overview. J Power Sour 278:109

    Article  CAS  Google Scholar 

  2. Alessandro G (2008) Macromolecules 41(24):9491–9950

    Article  Google Scholar 

  3. Alessandro G, Talita ML, Antonio JFC, Eliane T (2016) Chemical reviews 116(3):1637–1669

    Article  Google Scholar 

  4. Auras RA, Harte B, Selke S (2004) Macromol Biosci 4:835–864

    Article  CAS  Google Scholar 

  5. Auras RA, Harte B, Selke S, Hernandez R (2003) Mechanical, physical, and barrier properties of poly(lactide) films. J Plastic Film Sheeting 19(2):123–135

    Article  CAS  Google Scholar 

  6. Baiardo M, Frisoni G, Scandola M, Rimelen M, Lips D, Ruffieux K, Wintermantel E (2003) Thermal and mechanical properties of plasticized poly(L-lactic acid). J Appl Polym Sci 90:1731–1738

    Article  CAS  Google Scholar 

  7. Benali S, Aouadi S, Dechief AL, Murariu M, Dubois P (2015) Key factors for tuning hydrolytic degradation of polylactide/zinc oxide nanocomposites. Nanocomposites 1:51–61

    Article  CAS  Google Scholar 

  8. Bhatia A, Gupta RK, Bhattacharya SN, Choi HJ (2007) Compatibility of biodegradable poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) blends for packaging application. Korea Aus Rheol J 19:125–131

    Google Scholar 

  9. Bikiaris D (2011) Can nanoparticles really enhance thermal stability of polymers? Part II: an overview on thermal decomposition of polycondensation polymers. Thermochimica Acta 523:25–45

    Article  CAS  Google Scholar 

  10. Buzarovska A, Grozdanov A (2012) Biodegradable poly(L-lactic acid)/TiO2 nanocomposites: thermal properties and degradation. J Appl Polym Sci 123:2187–2193

    Article  CAS  Google Scholar 

  11. Chandy T, Das GS, Wilson RF, Rao GHR (2002) J Appl Polym Sci 86:1285

    Article  CAS  Google Scholar 

  12. Chang JH, An YU, Sur GS (2003) Poly(lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology, and gas permeability. J Polym Sci 41:94–103

    Article  CAS  Google Scholar 

  13. Chiellini E, Chiellini F, Cinelli P (2002) Polymers from renewable resources in Geralds Scott, degradable polymers principles and applications. 2nd edn. Kluwer Academic Publishers 163–233

    Google Scholar 

  14. Chrissafis K, Pavlidou E, Paraskevopoulos K, Beslikas T, Nianias N, Bikiaris D (2011) Enhancing mechanical and thermal properties of PLLA ligaments with fumed silica nanoparticles and montmorillonite. J Therm Anal Calorim 105:313–323

    Article  CAS  Google Scholar 

  15. Clarinval AM (2002) Classification and comparison of thermal and mechanical properties of commercialized polymers’ international congress and trade show. Ind Appl Bioplastics, 3rd, 4th and 5th February

    Google Scholar 

  16. Corres MA, Zubitur M, Cortazar M, Mugica A (2013) Thermal decomposition of phenoxy/clay nanocomposites: effect of organoclay microstructure. Polym Degrad Stab 98:818–828

    Article  CAS  Google Scholar 

  17. Degee P, Dubois P, Jerome R, Jacobsen S, Fritz H (1999) Macromol Symp 144:289

    Article  CAS  Google Scholar 

  18. Doi Y, Steinbu´chel A (2002) Biopolymers, applications and commercial products—polyesters III. Wiley-VCH, Weiheim, p 410

    Google Scholar 

  19. Drumright RE, Gruber PR, Henton DE (2002) Polylactide acid technology. Adv Mater 12:1841–1846

    Article  Google Scholar 

  20. Engineer C, Parikh J, Raval A (2011) Review on hydrolytic degradation behavior of biodegradable polymers from controlled drug delivery system. Trends Biomater Artif Org 25:79–85

    Google Scholar 

  21. Eric DL, Christopher YL (2013) Macromolecules 46(8):2877–2891

    Article  Google Scholar 

  22. Garlotta D (2001) A Literature review of poly(lactic acid). J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  23. Guo-Qiang C, Martin KP (2012) Chem Rev 112(4):2082–2099

    Article  Google Scholar 

  24. Gupta B, Revagade N, Hilborn J (2007) J. Poly(lactic acid) fiber: an overview. Prog Polym Sci 32:455–482

    Article  CAS  Google Scholar 

  25. Harris AM, Lee EC (2006) Injection molded Polylactide composites for automotive applications. SPE ACCE Paper 2006, No. 062906

    Google Scholar 

  26. Hu Y, Jiang X, Ding Y, Zhang L, Yang C, Zhang J, Chen J, Yang Y (2003) Biomaterials 24:2395

    Article  CAS  Google Scholar 

  27. Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68:2103–2106

    Article  CAS  Google Scholar 

  28. Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9:552–571

    Article  CAS  Google Scholar 

  29. Ke-Ke Y, Xiu-Li W, Wang YZ (2007) Progress in nanocomposite of biodegradable polymer. J Ind Eng Chem 13:485–500

    Google Scholar 

  30. Kowalski A, Duda A, Penczek S (2000) Macromolecules 33:689

    Article  CAS  Google Scholar 

  31. Lasprilla AJR, Martinez GAR, Lunelli BH, Jardini AL, Maciel R (2012) Biotechnol Adv 30:321–328

    Article  CAS  Google Scholar 

  32. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33(8):820–852

    Article  CAS  Google Scholar 

  33. Luckachan GL, Pillai CKS (2011) Biodegradable polymers–a review on recent trends and emerging perspectives. J Polym Environ 19:637–676

    Article  CAS  Google Scholar 

  34. Mark JE (2006) Some novel polymeric nanocomposites. Acc Chem Res 39:881–888

    Article  CAS  Google Scholar 

  35. Mittal V (2009) Polymer layered silicate nanocomposites: a review. Materials 2:992–1057

    Article  CAS  Google Scholar 

  36. Mohammad M, Winey KI (2006) Macromolecules 39(16):5194–5205

    Article  Google Scholar 

  37. Moon S, Jin F, Lee C, Tsutsumi S, Hyon S (2005) Novel carbon nanotube/poly(L-lactic acid) nanocomposites; their modulus, thermal stability, and electrical conductivity. Macromol Symp 224:278–295

    Article  Google Scholar 

  38. Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 10:8493–8501

    Article  Google Scholar 

  39. Nguyen QT, Baird DG (2006) Preparation of polymer–clay nanocomposites and their properties. Adv Polym Tech 25(4):270–285

    Article  CAS  Google Scholar 

  40. Ouch T, Saito T, Kontani T, Ohya Y (2004) Macromol Biosci 4:458

    Article  Google Scholar 

  41. Pantani R, De Santis F, Sorrentino A, De Maio F, Titomanlio G (2010) Crystallization kinetics of virgin and processed poly(lactic acid). Polym Degrad Stab 95:1148

    Article  CAS  Google Scholar 

  42. Petersson L, Oksman K, Mathew AP (2006) Using maleic anhydride grafted poly(lactic acid) as a compatibilizer in poly(lactic acid)/layered-silicate nanocomposites. J Appl Polym Sci 102:1852–1862

    Article  CAS  Google Scholar 

  43. Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Program Polym Sci 38:1504–1542

    Article  CAS  Google Scholar 

  44. Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079

    Article  CAS  Google Scholar 

  45. Ray SS, Okamoto M (2003) Biodegradable polylactide and its nanocomposites: opening a new dimension for plastics and composites. Macromol Rapid Commun 24:815–840

    Article  CAS  Google Scholar 

  46. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  47. Shameli K, Ahmad MB, Yunus WMZW, Ibrahim NA, Rahman RA, Jokar M, Darroudi M (2010) Silver/poly (lactic acid) nanocomposites: preparation, characterization, and antibacterial activity. Int J Nanomedicine 5:573–579

    Article  CAS  Google Scholar 

  48. Shibata M, Someya Y, Orihara M, Miyoshi M (2006) Thermal and mechanical properties of plasticized poly(L-lactide) nanocomposites with organo-modified montmorillonites. J Appl Polym Sci 99:2594–2602

    Article  CAS  Google Scholar 

  49. Sorrentino A, Gorrasi G, Vittoria V (2007) Trends Food Sci Technol 18:84–95

    Article  CAS  Google Scholar 

  50. Supronowicz PR, Ajayan PM, Ullmann KR, Arulanadam BP, Metzger DW, Bizios R (2002) Novel current-conducting composite substrates for reposing osteoblasts to alternating current simulation. J Biomed Mater Res 59:499–506

    Article  CAS  Google Scholar 

  51. Vilgis TA, Heinrich G, Kluppel M (2009) Reinforcement of polymer nano-composites theory, experiments and applications, 1st edn. Cambridge University Press, Cambridge, United of Kingdom

    Book  Google Scholar 

  52. Wang RY (2009) Study on toughening modification of Poly (lactic acid). Doctoral dissertation, Shanghai Jiaotong University

    Google Scholar 

  53. Wang RY, Wan CY, Wang SF, Zhang Y (2009) Morphology, mechanical properties, and durability of poly(lactic acid) plasticized with di(isononyl) cyclohexane-1,2-dicarboxylate. Polym Eng Sci 49(12):2414–2420

    Article  CAS  Google Scholar 

  54. Wen X, Zhang K, Wang Y, Han L, Han C, Zhang H (2010) Study of the thermal stabilization mechanism of biodegradable poly(L-lactide)/silica nanocomposites. Polym Int 60:202–210

    Article  Google Scholar 

  55. Wu D, Wu L, Zhou W, Zhang M, Yang T (2010) Crystallization and biodegradation of polylactide/carbon nanotube composites. Polym Eng Sci 50:1721–1733

    Article  CAS  Google Scholar 

  56. Yaodong L, Satish K (2014) Polymer/carbon nanotube nano composite fibers–a review. ACS Appl Mater Interface 6(9):6069–6087

    Article  Google Scholar 

  57. Zhang R, Ma PX (2004) Biomimetic polymer/apatite composite scaffolds for mineralized tissue engineering. Macromol Biosci 4:100

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shanavas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ameer Ali, M., Shanavas, A. (2019). Polylactic Acid-Based Nanocomposites: An Important Class of Biodegradable Composites. In: Gnanasekaran, D. (eds) Green Biopolymers and their Nanocomposites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-13-8063-1_9

Download citation

Publish with us

Policies and ethics