Skip to main content

Genetic Risk Factors for Alzheimer Disease: Emerging Roles of Microglia in Disease Pathomechanisms

  • Chapter
  • First Online:
Reviews on Biomarker Studies in Psychiatric and Neurodegenerative Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1118))

Abstract

The accumulation of aggregated amyloid β (Aβ) peptides in the brain is deeply involved in Alzheimer disease (AD) pathogenesis. Mutations in APP and presenilins play major roles in Aβ pathology in rare autosomal-dominant forms of AD, whereas pathomechanisms of sporadic AD, accounting for the majority of cases, remain unknown. In this chapter, we review current knowledge on genetic risk factors of AD, clarified by recent advances in genome analysis technology. Interestingly, TREM2 and many genes associated with disease risk are predominantly expressed in microglia, suggesting that these risk factors are involved in pathogenicity through common mechanisms involving microglia. Therefore, we focus on factors closely associated with microglia and discuss their possible roles in pathomechanisms of AD. Furthermore, we review current views on the pathological roles of microglia and emphasize the importance of microglial changes in response to Aβ deposition and mechanisms underlying the phenotypic changes. Importantly, functional outcomes of microglial activation can be both protective and deleterious to neurons. We further describe the involvement of microglia in tau pathology and the activation of other glial cells. Through these topics, we shed light on microglia as a promising target for drug development for AD and other neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL (2015) Alzheimer’s disease. Nat Rev Dis Prim 1:15056. https://doi.org/10.1038/nrdp.2015.56

    Article  PubMed  Google Scholar 

  2. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1:a006189. https://doi.org/10.1101/cshperspect.a006189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nordberg A, Rinne JO, Kadir A, Långström B (2010) The use of PET in Alzheimer disease. Nat Rev Neurol 6(2):78-87

    Article  CAS  PubMed  Google Scholar 

  4. Olsson B, Lautner R, Andreasson U, Öhrfelt A, Portelius E, Bjerke M et al (2016) CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol 15:673–684

    Article  CAS  PubMed  Google Scholar 

  5. Khachaturian AS, Hayden KM, Mielke MM, Tang Y, Lutz MW, Gustafson DR et al (2018) Future prospects and challenges for Alzheimer’s disease drug development in the era of the NIA-AA Research Framework. Alzheimers Dement 14:532–534

    Article  PubMed  Google Scholar 

  6. Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB et al (2018) NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 14:535–562

    Article  PubMed  PubMed Central  Google Scholar 

  7. Knopman DS, Haeberlein SB, Carrillo MC, Hendrix JA, Kerchner G, Margolin R et al (2018) The National Institute on Aging and the Alzheimer’s Association Research Framework for Alzheimer’s disease: perspectives from the research roundtable. Alzheimers Dement 14:563–575

    Article  PubMed  PubMed Central  Google Scholar 

  8. Silverberg N, Elliott C, Ryan L, Masliah E, Hodes R (2018) NIA commentary on the NIA-AA Research Framework: towards a biological definition of Alzheimer’s disease. Alzheimers Dement 14:576–578

    Article  PubMed  Google Scholar 

  9. Wolfe MS (2006) The γ-secretase complex: membrane-embedded proteolytic ensemble. Biochemistry 45:7931–7939

    Article  CAS  PubMed  Google Scholar 

  10. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bateman RJ, Xiong C, Benzinger TLS, Fagan AM, Goate A, Fox NC et al (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367:795–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reiman EM, Langbaum JB, Tariot PN, Lopera F, Bateman RJ, Morris JC et al (2016) CAP—advancing the evaluation of preclinical Alzheimer disease treatments. Nat Rev Neurol 12:56–61

    Article  CAS  PubMed  Google Scholar 

  13. Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S et al (2012) A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 488:96–99

    Article  CAS  PubMed  Google Scholar 

  14. Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M et al (2016) The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537:50–56

    Article  CAS  PubMed  Google Scholar 

  15. Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC et al (2010) Decreased clearance of CNS-amyloid in Alzheimer’s disease. Science 330(6012):1774. https://doi.org/10.1126/science.1197623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ovod V, Ramsey KN, Mawuenyega KG, Bollinger JG, Hicks T, Schneider T et al (2017) Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement 13:841–849

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nakamura A, Kaneko N, Villemagne VL, Kato T, Doecke J, Doré V et al (2018) High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 554:249–254

    Article  CAS  PubMed  Google Scholar 

  18. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923

    Article  CAS  PubMed  Google Scholar 

  19. Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell PC et al (1994) Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 7:180–184

    Article  CAS  PubMed  Google Scholar 

  20. Liu C-C, Liu C-C, Kanekiyo T, Xu H, Bu G (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9:106–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim J, Basak JM, Holtzman DM (2009) The role of apolipoprotein E in Alzheimer’s disease. Neuron 63:287–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45:1452–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lambert J-C, Heath S, Even G, Campion D, Sleegers K, Hiltunen M et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41:1094–1099

    Article  CAS  PubMed  Google Scholar 

  25. Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M et al (2010) Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 303:1832. https://doi.org/10.1001/jama.2010.574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Naj AC, Jun G, Beecham GW, Wang L-S, Vardarajan BN, Buros J et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43:436–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hollingworth P, Harold D, Sims R, Gerrish A, Lambert J-C, Carrasquillo MM et al (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43:429–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Desikan RS, Fan CC, Wang Y, Schork AJ, Cabral HJ, Cupples LA et al (2017) Genetic assessment of age-associated Alzheimer disease risk: development and validation of a polygenic hazard score. PLoS Med 14:e1002258. https://doi.org/10.1371/journal.pmed.1002258

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liu JZ, Erlich Y, Pickrell JK (2017) Case–control association mapping by proxy using family history of disease. Nat Genet 49:325–331

    Article  CAS  PubMed  Google Scholar 

  30. Marioni RE, Harris SE, Zhang Q, McRae AF, Hagenaars SP, Hill WD et al (2018) GWAS on family history of Alzheimer’s disease. Transl Psychiatry 8:99. https://doi.org/10.1038/s41398-018-0150-6

    Article  PubMed  PubMed Central  Google Scholar 

  31. Suh J, Choi SH, Romano DM, Gannon MA, Lesinski AN, Kim DY et al (2013) ADAM10 missense mutations potentiate β-amyloid accumulation by impairing prodomain chaperone function. Neuron 80:385–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J et al (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368:107–116

    Article  CAS  PubMed  Google Scholar 

  33. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127

    Article  CAS  PubMed  Google Scholar 

  34. Condello C, Yuan P, Grutzendler J (2018) Microglia-mediated neuroprotection, TREM2, and Alzheimer’s disease: evidence from optical imaging. Biol Psychiatry 83:377–387

    Article  CAS  PubMed  Google Scholar 

  35. Sims R, van der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N, Jakobsdottir J et al (2017) Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat Genet 49:1373–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pottier C, Hannequin D, Coutant S, Rovelet-Lecrux A, Wallon D, Rousseau S et al (2012) High frequency of potentially pathogenic SORL1 mutations in autosomal dominant early-onset Alzheimer disease. Mol Psychiatry 17:875–879

    Article  CAS  PubMed  Google Scholar 

  37. Cruchaga C, Karch CM, Jin SC, Benitez BA, Cai Y, Guerreiro R et al (2014) Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer’s disease. Nature 505:550–554

    Article  CAS  PubMed  Google Scholar 

  38. Logue MW, Schu M, Vardarajan BN, Farrell J, Bennett DA, Buxbaum JD et al (2014) Two rare AKAP9 variants are associated with Alzheimer’s disease in African Americans. Alzheimers Dement 10:609–618.e11. https://doi.org/10.1016/j.jalz.2014.06.010

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wetzel-Smith MK, Hunkapiller J, Bhangale TR, Srinivasan K, Maloney JA, Atwal JK et al (2014) A rare mutation in UNC5C predisposes to late-onset Alzheimer’s disease and increases neuronal cell death. Nat Med 20:1452–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Raghavan NS, Brickman AM, Andrews H, Manly JJ, Schupf N, Lantigua R et al (2018) Whole-exome sequencing in 20,197 persons for rare variants in Alzheimer’s disease. Ann Clin Transl Neurol 5:832–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Erikson GA, Bodian DL, Rueda M, Molparia B, Scott ER, Scott-Van Zeeland AA et al (2016) Whole-genome sequencing of a healthy aging cohort. Cell 165:1002–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ridge PG, Karch CM, Hsu S, Arano I, Teerlink CC, Ebbert MTW et al (2017) Linkage, whole genome sequence, and biological data implicate variants in RAB10 in Alzheimer’s disease resilience. Genome Med 9:100. https://doi.org/10.1186/s13073-017-0486-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hansen DV, Hanson JE, Sheng M (2018) Microglia in Alzheimer’s disease. J Cell Biol 217:459–472

    Article  PubMed  CAS  Google Scholar 

  44. Guerreiro RJ, Lohmann E, Brás JM, Gibbs JR, Rohrer JD, Gurunlian N et al (2013) Using exome sequencing to reveal mutations in TREM2 presenting as a frontotemporal dementia-like syndrome without bone involvement. JAMA Neurol 70:78. https://doi.org/10.1001/jamaneurol.2013.579

    Article  PubMed  PubMed Central  Google Scholar 

  45. Paradowska-Gorycka A, Jurkowska M (2013) Structure, expression pattern and biological activity of molecular complex TREM-2/DAP12. Hum Immunol 74:730–737

    Article  CAS  PubMed  Google Scholar 

  46. Pottier C, Ravenscroft TA, Brown PH, Finch NA, Baker M, Parsons M et al (2016) TYROBP genetic variants in early-onset Alzheimer’s disease. Neurobiol Aging 48:222.e9–222.e15. https://doi.org/10.1016/j.neurobiolaging.2016.07.028

    Article  CAS  Google Scholar 

  47. Wang Y, Cella M, Mallinson K, Ulrich JD, Young KL, Robinette ML et al (2015) TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160:1061–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhao Y, Wu X, Li X, Jiang L-L, Gui X, Liu Y et al (2018) TREM2 is a receptor for β-amyloid that mediates microglial function. Neuron 97:1023–1031.e7. https://doi.org/10.1016/j.neuron.2018.01.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yeh FL, Wang Y, Tom I, Gonzalez LC, Sheng M (2016) TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by microglia. Neuron 91:328–340

    Article  CAS  PubMed  Google Scholar 

  50. Peng Q, Malhotra S, Torchia JA, Kerr WG, Coggeshall KM, Humphrey MB (2010) TREM2- and DAP12-dependent activation of PI3K requires DAP10 and is inhibited by SHIP1. Sci Signal 3:ra38. https://doi.org/10.1126/scisignal.2000500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Otero K, Turnbull IR, Poliani PL, Vermi W, Cerutti E, Aoshi T et al (2009) Macrophage colony-stimulating factor induces the proliferation and survival of macrophages via a pathway involving DAP12 and β-catenin. Nat Immunol 10:734–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jay TR, von Saucken VE, Landreth GE (2017) TREM2 in neurodegenerative diseases. Mol Neurodegener 12:56. https://doi.org/10.1186/s13024-017-0197-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Barrow AD, Trowsdale J (2006) You say ITAM and I say ITIM, let’s call the whole thing off: the ambiguity of immunoreceptor signalling. Eur J Immunol 36:1646–1653

    Article  CAS  PubMed  Google Scholar 

  54. Zhong L, Chen X-F, Wang T, Wang Z, Liao C, Wang Z et al (2017) Soluble TREM2 induces inflammatory responses and enhances microglial survival. J Exp Med 214:597–607

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kleinberger G, Yamanishi Y, Suarez-Calvet M, Czirr E, Lohmann E, Cuyvers E et al (2014) TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci Transl Med 6:243ra86. https://doi.org/10.1126/scitranslmed.3009093

    Article  CAS  PubMed  Google Scholar 

  56. Kober DL, Alexander-Brett JM, Karch CM, Cruchaga C, Colonna M, Holtzman MJ et al (2016) Neurodegenerative disease mutations in TREM2 reveal a functional surface and distinct loss-of-function mechanisms. Elife 5. https://doi.org/10.7554/eLife.20391

  57. Sudom A, Talreja S, Danao J, Bragg E, Kegel R, Min X et al (2018) Molecular basis for the loss-of-function effects of the Alzheimer’s disease-associated R47H variant of the immune receptor TREM2. J Biol Chem 293:12634–12646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang Y, Ulland TK, Ulrich JD, Song W, Tzaferis JA, Hole JT et al (2016) TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. J Exp Med 213:667–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jay TR, Miller CM, Cheng PJ, Graham LC, Bemiller S, Broihier ML et al (2015) TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer’s disease mouse models. J Exp Med 212:287–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jay TR, Hirsch AM, Broihier ML, Miller CM, Neilson LE, Ransohoff RM et al (2017) Disease progression-dependent effects of TREM2 deficiency in a mouse model of Alzheimer’s disease. J Neurosci 37:637–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yuan P, Condello C, Keene CD, Wang Y, Bird TD, Paul SM et al (2016) TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy. Neuron 92:252–264

    Article  CAS  PubMed  Google Scholar 

  62. Condello C, Yuan P, Schain A, Grutzendler J (2015) Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques. Nat Commun 6:6176. https://doi.org/10.1038/ncomms7176

    Article  CAS  PubMed  Google Scholar 

  63. Piccio L, Buonsanti C, Cella M, Tassi I, Schmidt RE, Fenoglio C et al (2008) Identification of soluble TREM-2 in the cerebrospinal fluid and its association with multiple sclerosis and CNS inflammation. Brain 131:3081–3091

    Article  PubMed  PubMed Central  Google Scholar 

  64. Piccio L, Deming Y, Del-Águila JL, Ghezzi L, Holtzman DM, Fagan AM et al (2016) Cerebrospinal fluid soluble TREM2 is higher in Alzheimer disease and associated with mutation status. Acta Neuropathol 131:925–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Suárez-Calvet M, Kleinberger G, Araque Caballero MÁ, Brendel M, Rominger A, Alcolea D et al (2016) sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer’s disease and associate with neuronal injury markers. EMBO Mol Med 8:466–476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Bertram L, Lange C, Mullin K, Parkinson M, Hsiao M, Hogan MF et al (2008) Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to APOE. Am J Hum Genet 83:623–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Reitz C, Jun G, Naj A, Rajbhandary R, Vardarajan BN, Wang L-S et al (2013) Variants in the ATP-binding cassette transporter (ABCA7), apolipoprotein E ϵ4, and the risk of late-onset Alzheimer disease in African Americans. JAMA 309:1483. https://doi.org/10.1001/jama.2013.2973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ravetch JV, Lanier LL (2000) Immune inhibitory receptors. Science 290:84–89

    Article  CAS  PubMed  Google Scholar 

  69. Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, Mullin K et al (2013) Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 78:631–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chan G, White CC, Winn PA, Cimpean M, Replogle JM, Glick LR et al (2015) CD33 modulates TREM2: convergence of Alzheimer loci. Nat Neurosci 18:1556–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhu X-C, Yu J-T, Jiang T, Wang P, Cao L, Tan L (2015) CR1 in Alzheimer’s disease. Mol Neurobiol 51:753–765

    Article  CAS  PubMed  Google Scholar 

  72. Klickstein LB, Bartow TJ, Miletic V, Rabson LD, Smith JA, Fearon DT (1988) Identification of distinct C3b and C4b recognition sites in the human C3b/C4b receptor (CR1, CD35) by deletion mutagenesis. J Exp Med 168:1699–1717

    Article  CAS  PubMed  Google Scholar 

  73. Klickstein LB, Barbashov SF, Liu T, Jack RM, Nicholson-Weller A (1997) Complement receptor type 1 (CR1, CD35) is a receptor for C1q. Immunity 7:345–355

    Article  CAS  PubMed  Google Scholar 

  74. Brouwers N, Van Cauwenberghe C, Engelborghs S, Lambert JC, Bettens K, Le Bastard N et al (2012) Alzheimer risk associated with a copy number variation in the complement receptor 1 increasing C3b/C4b binding sites. Mol Psychiatry 17:223–233

    Article  CAS  PubMed  Google Scholar 

  75. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N et al (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–1178

    Article  CAS  PubMed  Google Scholar 

  76. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R et al (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S et al (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352:712–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kao AW, McKay A, Singh PP, Brunet A, Huang EJ (2017) Progranulin, lysosomal regulation and neurodegenerative disease. Nat Rev Neurosci 18:325–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C et al (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442:916–919

    Article  CAS  PubMed  Google Scholar 

  80. Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D et al (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442:920–924

    Article  CAS  PubMed  Google Scholar 

  81. Viswanathan J, Mäkinen P, Helisalmi S, Haapasalo A, Soininen H, Hiltunen M (2009) An association study between granulin gene polymorphisms and Alzheimer’s disease in Finnish population. Am J Med Genet B Neuropsychiatr Genet 150B:747–750

    Article  CAS  PubMed  Google Scholar 

  82. Sheng J, Su L, Xu Z, Chen G (2014) Progranulin polymorphism rs5848 is associated with increased risk of Alzheimer’s disease. Gene 542:141–145

    Article  CAS  PubMed  Google Scholar 

  83. Kamalainen A, Viswanathan J, Natunen T, Helisalmi S, Kauppinen T, Pikkarainen M et al (2013) GRN variant rs5848 reduces plasma and brain levels of granulin in Alzheimer’s disease patients. J Alzheimers Dis 33:23–27

    Article  CAS  PubMed  Google Scholar 

  84. Fenoglio C, Galimberti D, Cortini F, Kauwe JSK, Cruchaga C, Venturelli E et al (2009) Rs5848 variant influences GRN mRNA levels in brain and peripheral mononuclear cells in patients with Alzheimer’s disease. J Alzheimers Dis 18:603–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Takahashi H, Klein ZA, Bhagat SM, Kaufman AC, Kostylev MA, Ikezu T et al (2017) Opposing effects of progranulin deficiency on amyloid and tau pathologies via microglial TYROBP network. Acta Neuropathol 133:785–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Minami SS, Min SW, Krabbe G, Wang C, Zhou Y, Asgarov R et al (2014) Progranulin protects against amyloid β deposition and toxicity in Alzheimer’s disease mouse models. Nat Med 20:1157–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lui H, Zhang J, Makinson SR, Cahill MK, Kelley KW, Huang H-Y et al (2016) Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 165:921–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ramanan VK, Risacher SL, Nho K, Kim S, Shen L, McDonald BC et al (2015) GWAS of longitudinal amyloid accumulation on 18F-florbetapir PET in Alzheimer’s disease implicates microglial activation gene IL1RAP. Brain 138:3076–3088

    Article  PubMed  PubMed Central  Google Scholar 

  89. Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ et al (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A 86:7611–7615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shaftel SS, Kyrkanides S, Olschowka JA, Miller JH, Johnson RE, O’Banion MK (2007) Sustained hippocampal IL-1 beta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J Clin Invest 117:1595–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ghosh S, Wu MD, Shaftel SS, Kyrkanides S, LaFerla FM, Olschowka JA et al (2013) Sustained interleukin-1 overexpression exacerbates tau pathology despite reduced amyloid burden in an Alzheimer’s mouse model. J Neurosci 33:5053–5064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A et al (2012) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493:674–678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Vasquez JB, Fardo DW, Estus S (2013) ABCA7 expression is associated with Alzheimer’s disease polymorphism and disease status. Neurosci Lett 556:58–62

    Article  CAS  PubMed  Google Scholar 

  94. Steinberg S, Stefansson H, Jonsson T, Johannsdottir H, Ingason A, Helgason H et al (2015) Loss-of-function variants in ABCA7 confer risk of Alzheimer’s disease. Nat Genet 47:445–447

    Article  CAS  PubMed  Google Scholar 

  95. Sassi C, Nalls MA, Ridge PG, Gibbs JR, Ding J, Lupton MK et al (2016) ABCA7 p.G215S as potential protective factor for Alzheimer’s disease. Neurobiol Aging 46:235.e1–235.e9. https://doi.org/10.1016/j.neurobiolaging.2016.04.004

    Article  CAS  Google Scholar 

  96. Kaminski WE, Orsó E, Diederich W, Klucken J, Drobnik W, Schmitz G (2000) Identification of a novel human sterol-sensitive ATP-binding cassette transporter (ABCA7). Biochem Biophys Res Commun 273:532–538

    Article  CAS  PubMed  Google Scholar 

  97. Hayashi M, Abe-Dohmae S, Okazaki M, Ueda K, Yokoyama S (2005) Heterogeneity of high density lipoprotein generated by ABCA1 and ABCA7. J Lipid Res 46:1703–1711

    Article  CAS  PubMed  Google Scholar 

  98. Wang N, Lan D, Gerbod-Giannone M, Linsel-Nitschke P, Jehle AW, Chen W et al (2003) ATP-binding cassette transporter A7 (ABCA7) binds apolipoprotein A-I and mediates cellular phospholipid but not cholesterol efflux. J Biol Chem 278:42906–42912

    Article  CAS  PubMed  Google Scholar 

  99. Jehle AW, Gardai SJ, Li S, Linsel-Nitschke P, Morimoto K, Janssen WJ et al (2006) ATP-binding cassette transporter A7 enhances phagocytosis of apoptotic cells and associated ERK signaling in macrophages. J Cell Biol 174:547–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tanaka N, Abe-Dohmae S, Iwamoto N, Fitzgerald ML, Yokoyama S (2010) Helical apolipoproteins of high-density lipoprotein enhance phagocytosis by stabilizing ATP-binding cassette transporter A7. J Lipid Res 51:2591–2599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Morizawa YM, Hirayama Y, Ohno N, Shibata S, Shigetomi E, Sui Y et al (2017) Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway. Nat Commun 8:28. https://doi.org/10.1038/s41467-017-00037-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hedgecock EM, Sulston JE, Thomson JN (1983) Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science 220:1277–1279

    Article  CAS  PubMed  Google Scholar 

  103. Ellis RE, Jacobson DM, Horvitz HR (1991) Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. Genetics 129:79–94

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Kim WS, Li H, Ruberu K, Chan S, Elliott DA, Low JK et al (2013) Deletion of Abca7 increases cerebral amyloid-β accumulation in the J20 mouse model of Alzheimer’s disease. J Neurosci 33:4387–4394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sakae N, Liu C-C, Shinohara M, Frisch-Daiello J, Ma L, Yamazaki Y et al (2016) ABCA7 deficiency accelerates amyloid-beta generation and Alzheimer’s neuronal pathology. J Neurosci 36:3848–3859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Satoh K, Abe-Dohmae S, Yokoyama S, St George-Hyslop P, Fraser PE (2015) ATP-binding cassette transporter A7 (ABCA7) loss of function alters Alzheimer amyloid processing. J Biol Chem 290:24152–24165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mao D, Epple H, Uthgenannt B, Novack DV, Faccio R (2006) PLCγ2 regulates osteoclastogenesis via its interaction with ITAM proteins and GAB2. J Clin Invest 116:2869–2879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bunney TD, Katan M (2011) PLC regulation: emerging pictures for molecular mechanisms. Trends Biochem Sci 36:88–96

    Article  CAS  PubMed  Google Scholar 

  109. Walliser C, Retlich M, Harris R, Everett KL, Josephs MB, Vatter P et al (2008) rac regulates its effector phospholipase Cgamma2 through interaction with a split pleckstrin homology domain. J Biol Chem 283:30351–30362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bunney TD, Opaleye O, Roe SM, Vatter P, Baxendale RW, Walliser C et al (2009) Structural insights into formation of an active signaling complex between Rac and phospholipase C Gamma 2. Mol Cell 34:223–233

    Article  CAS  PubMed  Google Scholar 

  111. Bae J, Sung BH, Cho IH, Song WK (2012) F-actin-dependent regulation of NESH dynamics in rat hippocampal neurons. PLoS One 7:e34514. https://doi.org/10.1371/journal.pone.0034514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bae J, Sung BH, Cho IH, Kim S-M, Song WK (2012) NESH regulates dendritic spine morphology and synapse formation. PLoS One 7:e34677. https://doi.org/10.1371/journal.pone.0034677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Satoh J-I, Kino Y, Yanaizu M, Tosaki Y, Sakai K, Ishida T et al (2017) Microglia express ABI3 in the brains of Alzheimer’s disease and Nasu-Hakola disease. Intractable Rare Dis Res 6:262–268

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ichigotani Y, Fujii K, Hamaguchi M, Matsuda S (2002) In search of a function for the E3B1/Abi2/Argbp1/NESH family (Review). Int J Mol Med 9:591–595

    CAS  PubMed  Google Scholar 

  115. Sekino S, Kashiwagi Y, Kanazawa H, Takada K, Baba T, Sato S et al (2015) The NESH/Abi-3-based WAVE2 complex is functionally distinct from the Abi-1-based WAVE2 complex. Cell Commun Signal 13:41. https://doi.org/10.1186/s12964-015-0119-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Moraes L, Zanchin NIT, Cerutti JM (2017) ABI3, a component of the WAVE2 complex, is potentially regulated by PI3K/AKT pathway. Oncotarget 8:67769–67781

    Article  PubMed  PubMed Central  Google Scholar 

  117. Huang KL, Marcora E, Pimenova AA, Di Narzo AF, Kapoor M, Jin SC et al (2017) A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer’s disease. Nat Neurosci 20:1052–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Fisher RC, Scott EW (1998) Role of PU.1 in hematopoiesis. Stem Cells 16:25–37

    Article  CAS  PubMed  Google Scholar 

  119. Smith AM, Gibbons HM, Oldfield RL, Bergin PM, Mee EW, Faull RLM et al (2013) The transcription factor PU.1 is critical for viability and function of human brain microglia. Glia 61:929–942

    Article  PubMed  Google Scholar 

  120. Pauls SD, Marshall AJ (2017) Regulation of immune cell signaling by SHIP1: a phosphatase, scaffold protein, and potential therapeutic target. Eur J Immunol 47:932–945

    Article  CAS  PubMed  Google Scholar 

  121. Antunez C, Boada M, Gonzalez-Perez A, Gayan J, Ramirez-Lorca R, Marin J et al (2011) The membrane-spanning 4-domains, subfamily A (MS4A) gene cluster contains a common variant associated with Alzheimer’s disease. Genome Med 3:33. https://doi.org/10.1186/gm249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Greer PL, Bear DM, Lassance J-M, Bloom ML, Tsukahara T, Pashkovski SL et al (2016) A family of non-GPCR chemosensors defines an alternative logic for mammalian olfaction. Cell 165:1734–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sanyal R, Polyak MJ, Zuccolo J, Puri M, Deng L, Roberts L et al (2017) MS4A4A: a novel cell surface marker for M2 macrophages and plasma cells. Immunol Cell Biol 95:611–619

    Article  CAS  PubMed  Google Scholar 

  124. Rocha H, Sampaio M, Rocha R, Fernandes S, Leão M (2016) MEF2C haploinsufficiency syndrome: report of a new MEF2C mutation and review. Eur J Med Genet 59:478–482

    Article  PubMed  Google Scholar 

  125. Canté-Barrett K, Pieters R, Meijerink JPP (2014) Myocyte enhancer factor 2C in hematopoiesis and leukemia. Oncogene 33:403–410

    Article  PubMed  CAS  Google Scholar 

  126. Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M et al (2014) Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:1312–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Deczkowska A, Matcovitch-Natan O, Tsitsou-Kampeli A, Ben-Hamo S, Dvir-Szternfeld R, Spinrad A et al (2017) Mef2C restrains microglial inflammatory response and is lost in brain ageing in an IFN-I-dependent manner. Nat Commun 8:717. https://doi.org/10.1038/s41467-017-00769-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Akiyama H (1994) Inflammatory response in Alzheimer’s disease. Tohoku J Exp Med 174:295–303

    Article  CAS  PubMed  Google Scholar 

  129. Streit WJ, Braak H, Xue Q-S, Bechmann I (2009) Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathol 118:475–485

    Article  PubMed  PubMed Central  Google Scholar 

  130. Bisht K, Sharma KP, Lecours C, Sánchez MG, El Hajj H, Milior G et al (2016) Dark microglia: a new phenotype predominantly associated with pathological states. Glia 64:826–839

    Article  PubMed  PubMed Central  Google Scholar 

  131. Plescher M, Seifert G, Hansen JN, Bedner P, Steinhäuser C, Halle A (2018) Plaque-dependent morphological and electrophysiological heterogeneity of microglia in an Alzheimer’s disease mouse model. Glia 66:1464–1480

    Article  PubMed  Google Scholar 

  132. Yasuno F, Ota M, Kosaka J, Ito H, Higuchi M, Doronbekov TK et al (2008) Increased binding of peripheral benzodiazepine receptor in Alzheimer’s disease measured by positron emission tomography with [11C]DAA1106. Biol Psychiatry 64:835–841

    Article  CAS  PubMed  Google Scholar 

  133. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G et al (2014) Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat Neurosci 17:131–143

    Article  CAS  PubMed  Google Scholar 

  134. Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, Fernhoff NB et al (2016) New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci U S A 113:E1738–E1746. https://doi.org/10.1073/pnas.1525528113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK et al (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169:1276–1290.e17. https://doi.org/10.1016/j.cell.2017.05.018

    Article  CAS  PubMed  Google Scholar 

  136. Füger P, Hefendehl JK, Veeraraghavalu K, Wendeln A-C, Schlosser C, Obermüller U et al (2017) Microglia turnover with aging and in an Alzheimer’s model via long-term in vivo single-cell imaging. Nat Neurosci 20:1371–1376

    Article  PubMed  CAS  Google Scholar 

  137. Ulland TK, Song WM, Huang SC-C, Ulrich JD, Sergushichev A, Beatty WL, et al (2017) TREM2 Maintains Microglial Metabolic Fitness in Alzheimer’s Disease. Cell 170:649–663.e13. https://doi.org/10.1016/j.cell.2017.07.023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Mazaheri F, Snaidero N, Kleinberger G, Madore C, Daria A, Werner G et al (2017) TREM2 deficiency impairs chemotaxis and microglial responses to neuronal injury. EMBO Rep 18:1186–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R et al (2017) The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47:566–581.e9. https://doi.org/10.1016/j.immuni.2017.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Grathwohl SA, Kälin RE, Bolmont T, Prokop S, Winkelmann G, Kaeser SA et al (2009) Formation and maintenance of Alzheimer’s disease β-amyloid plaques in the absence of microglia. Nat Neurosci 12:1361–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Dagher NN, Najafi AR, Kayala KMN, Elmore MRP, White TE, Medeiros R et al (2015) Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice. J Neuroinflammation 12:139. https://doi.org/10.1186/s12974-015-0366-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Olmos-Alonso A, Schetters STT, Sri S, Askew K, Mancuso R, Vargas-Caballero M et al (2016) Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer’s-like pathology. Brain 139:891–907

    Article  PubMed  PubMed Central  Google Scholar 

  143. Spangenberg EE, Lee RJ, Najafi AR, Rice RA, Elmore MRP, Blurton-Jones M et al (2016) Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-β pathology. Brain 139:1265–1281

    Article  PubMed  PubMed Central  Google Scholar 

  144. Sosna J, Philipp S, Albay R, Reyes-Ruiz JM, Baglietto-Vargas D, LaFerla FM et al (2018) Early long-term administration of the CSF1R inhibitor PLX3397 ablates microglia and reduces accumulation of intraneuronal amyloid, neuritic plaque deposition and pre-fibrillar oligomers in 5XFAD mouse model of Alzheimer’s disease. Mol Neurodegener 13:11. https://doi.org/10.1186/s13024-018-0244-x

    Article  PubMed  PubMed Central  Google Scholar 

  145. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wyss-Coray T, Rogers J (2012) Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2:a006346. https://doi.org/10.1101/cshperspect.a006346

    Article  PubMed  PubMed Central  Google Scholar 

  147. Brown GC, Neher JJ (2014) Microglial phagocytosis of live neurons. Nat Rev Neurosci 15:209–216

    Article  CAS  PubMed  Google Scholar 

  148. Fuhrmann M, Bittner T, Jung CKE, Burgold S, Page RM, Mitteregger G et al (2010) Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer’s disease. Nat Neurosci 13:411–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Fourgeaud L, Través PG, Tufail Y, Leal-Bailey H, Lew ED, Burrola PG et al (2016) TAM receptors regulate multiple features of microglial physiology. Nature 532:240–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK, Vos MR et al (2014) Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156:1193–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Venegas C, Kumar S, Franklin BS, Dierkes T, Brinkschulte R, Tejera D et al (2017) Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature 552:355–361

    Article  CAS  PubMed  Google Scholar 

  152. Yoshiyama Y, Higuchi M, Zhang B, Huang S-M, Iwata N, Saido TC et al (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53:337–351

    Article  CAS  PubMed  Google Scholar 

  153. Leyns CEG, Ulrich JD, Finn MB, Stewart FR, Koscal LJ, Remolina Serrano J et al (2017) TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc Natl Acad Sci U S A 114:11524–11529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bemiller SM, McCray TJ, Allan K, Formica SV, Xu G, Wilson G et al (2017) TREM2 deficiency exacerbates tau pathology through dysregulated kinase signaling in a mouse model of tauopathy. Mol Neurodegener 12:74. https://doi.org/10.1186/s13024-017-0216-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, Luo W et al (2017) ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549:523–527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Goedert M, Eisenberg DS, Crowther RA (2017) Propagation of Tau aggregates and neurodegeneration. Annu Rev Neurosci 40:189–210

    Article  CAS  PubMed  Google Scholar 

  157. Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J, Haydar T et al (2015) Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci 18:1584–1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2:679–689

    Article  CAS  PubMed  Google Scholar 

  159. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Clarke LE, Liddelow SA, Chakraborty C, Münch AE, Heiman M, Barres BA (2018) Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci U S A 115:E1896–E1905. https://doi.org/10.1073/pnas.1800165115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Yun SP, Kam T-I, Panicker N, Kim S, Oh Y, Park J-S et al (2018) Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med 24:931–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. De Strooper B, Karran E (2016) The cellular phase of Alzheimer’s disease. Cell 164:603–615

    Article  PubMed  CAS  Google Scholar 

  163. Mullard A (2018) Microglia-targeted candidates push the Alzheimer drug envelope. Nat Rev Drug Discov 17:303–305

    Article  CAS  PubMed  Google Scholar 

  164. Salter MW, Stevens B (2017) Microglia emerge as central players in brain disease. Nat Med 23:1018–1027

    Article  CAS  PubMed  Google Scholar 

  165. Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240:622–630

    Article  CAS  PubMed  Google Scholar 

  166. Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, Patterson BW et al (2011) Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci Transl Med 3:89ra57. https://doi.org/10.1126/scitranslmed.3002156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Deane R, Sagare A, Hamm K, Parisi M, Lane S, Finn MB et al (2008) apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J Clin Invest 118:4002–4013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hashimoto T, Serrano-Pozo A, Hori Y, Adams KW, Takeda S, Banerji AO et al (2012) Apolipoprotein E, especially apolipoprotein E4, increases the oligomerization of amyloid beta peptide. J Neurosci 32:15181–15192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ubelmann F, Burrinha T, Salavessa L, Gomes R, Ferreira C, Moreno N et al (2017) Bin1 and CD2AP polarise the endocytic generation of beta-amyloid. EMBO Rep 18:102–122

    Article  CAS  PubMed  Google Scholar 

  170. Miyagawa T, Ebinuma I, Morohashi Y, Hori Y, Young Chang M, Hattori H et al (2016) BIN1 regulates BACE1 intracellular trafficking and amyloid-beta production. Hum Mol Genet 25:2948–2958

    CAS  PubMed  Google Scholar 

  171. Calafate S, Flavin W, Verstreken P, Moechars D (2016) Loss of Bin1 promotes the propagation of Tau pathology. Cell Rep 17:931–940

    Article  CAS  PubMed  Google Scholar 

  172. Singh MK, Dadke D, Nicolas E, Serebriiskii IG, Apostolou S, Canutescu A et al (2008) A novel Cas family member, HEPL, regulates FAK and cell spreading. Mol Biol Cell 19:1627–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Dourlen P, Fernandez-Gomez FJ, Dupont C, Grenier-Boley B, Bellenguez C, Obriot H et al (2017) Functional screening of Alzheimer risk loci identifies PTK2B as an in vivo modulator and early marker of Tau pathology. Mol Psychiatry 22:874–883

    Article  CAS  PubMed  Google Scholar 

  174. Schaefer A, van Duijn TJ, Majolee J, Burridge K, Hordijk PL (2017) Endothelial CD2AP binds the receptor ICAM-1 to control mechanosignaling, leukocyte adhesion, and the route of leukocyte diapedesis in vitro. J Immunol 198:4823–4836

    Article  CAS  PubMed  Google Scholar 

  175. Kobayashi S, Sawano A, Nojima Y, Shibuya M, Maru Y (2004) The c-Cbl/CD2AP complex regulates VEGF-induced endocytosis and degradation of Flt-1 (VEGFR-1). FASEB J 18:929–931

    Article  CAS  PubMed  Google Scholar 

  176. Shulman JM, Imboywa S, Giagtzoglou N, Powers MP, Hu Y, Devenport D et al (2014) Functional screening in Drosophila identifies Alzheimer’s disease susceptibility genes and implicates Tau-mediated mechanisms. Hum Mol Genet 23:870–877

    Article  CAS  PubMed  Google Scholar 

  177. Kress C, Gautier-Courteille C, Osborne HB, Babinet C, Paillard L (2007) Inactivation of CUG-BP1/CELF1 causes growth, viability, and spermatogenesis defects in mice. Mol Cell Biol 27:1146–1157

    Article  CAS  PubMed  Google Scholar 

  178. Calero M, Tokuda T, Rostagno A, Kumar A, Zlokovic B, Frangione B et al (1999) Functional and structural properties of lipid-associated apolipoprotein J (clusterin). Biochem J 344(Pt 2):375–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Bartl MM, Luckenbach T, Bergner O, Ullrich O, Koch-Brandt C (2001) Multiple receptors mediate apoJ-dependent clearance of cellular debris into nonprofessional phagocytes. Exp Cell Res 271:130–141

    Article  CAS  PubMed  Google Scholar 

  180. Lakins JN, Poon S, Easterbrook-Smith SB, Carver JA, Tenniswood MPR, Wilson MR (2002) Evidence that clusterin has discrete chaperone and ligand binding sites. Biochemistry 41:282–291

    Article  CAS  PubMed  Google Scholar 

  181. Bell RD, Sagare AP, Friedman AE, Bedi GS, Holtzman DM, Deane R et al (2007) Transport pathways for clearance of human Alzheimer’s amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J Cereb Blood Flow Metab 27:909–918

    Article  CAS  PubMed  Google Scholar 

  182. Ramani VC, Hennings L, Haun RS (2008) Desmoglein 2 is a substrate of kallikrein 7 in pancreatic cancer. BMC Cancer 8:373. https://doi.org/10.1186/1471-2407-8-373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Yamazaki T, Masuda J, Omori T, Usui R, Akiyama H, Maru Y (2009) EphA1 interacts with integrin-linked kinase and regulates cell morphology and motility. J Cell Sci 122:243–255

    Article  CAS  PubMed  Google Scholar 

  184. Ivanov AI, Romanovsky AA (2006) Putative dual role of ephrin-Eph receptor interactions in inflammation. IUBMB Life 58:389–394

    Article  CAS  PubMed  Google Scholar 

  185. Yasuda-Yamahara M, Rogg M, Frimmel J, Trachte P, Helmstaedter M, Schroder P et al (2018) FERMT2 links cortical actin structures, plasma membrane tension and focal adhesion function to stabilize podocyte morphology. Matrix Biol 68–69:263–279

    Article  PubMed  CAS  Google Scholar 

  186. Chapuis J, Flaig A, Grenier-Boley B, Eysert F, Pottiez V, Deloison G et al (2017) Genome-wide, high-content siRNA screening identifies the Alzheimer’s genetic risk factor FERMT2 as a major modulator of APP metabolism. Acta Neuropathol 133:955–966

    Article  CAS  PubMed  Google Scholar 

  187. Pinet V, Vergelli M, Martin R, Bakke O, Long EO (1995) Antigen presentation mediated by recycling of surface HLA-DR molecules. Nature 375:603–606

    Article  CAS  PubMed  Google Scholar 

  188. Wesche H, Korherr C, Kracht M, Falk W, Resch K, Martin MU (1997) The interleukin-1 receptor accessory protein (IL-1RAcP) is essential for IL-1-induced activation of interleukin-1 receptor-associated kinase (IRAK) and stress-activated protein kinases (SAP kinases). J Biol Chem 272:7727–7731

    Article  CAS  PubMed  Google Scholar 

  189. Chen Z, Shojaee S, Buchner M, Geng H, Lee JW, Klemm L et al (2015) Signalling thresholds and negative B-cell selection in acute lymphoblastic leukaemia. Nature 521:357–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Gossett LA, Kelvin DJ, Sternberg EA, Olson EN (1989) A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol Cell Biol 9:5022–5033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Duriez B, Duquesnoy P, Escudier E, Bridoux A-M, Escalier D, Rayet I et al (2007) A common variant in combination with a nonsense mutation in a member of the thioredoxin family causes primary ciliary dyskinesia. Proc Natl Acad Sci U S A 104:3336–3341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Takatori S, Tomita T (2018) AP180 N-terminal homology (ANTH) and epsin N-terminal homology (ENTH) domains: physiological functions and involvement in disease. Adv Exp Med Biol May 18. https://doi.org/10.1007/5584_2018_218. [Epub ahead of print]

    Google Scholar 

  193. Kanatsu K, Morohashi Y, Suzuki M, Kuroda H, Watanabe T, Tomita T et al (2014) Decreased CALM expression reduces Aβ42 to total Aβ ratio through clathrin-mediated endocytosis of γ-secretase. Nat Commun 5:3386. https://doi.org/10.1038/ncomms4386

    Article  CAS  PubMed  Google Scholar 

  194. Kanatsu K, Hori Y, Takatori S, Watanabe T, Iwatsubo T, Tomita T (2016) Partial loss of CALM function reduces Aβ42 production and amyloid deposition in vivo. Hum Mol Genet 25:3988–3997

    Article  CAS  PubMed  Google Scholar 

  195. Zhao Z, Sagare AP, Ma Q, Halliday MR, Kong P, Kisler K et al (2015) Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nat Neurosci 18:978–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Moreau K, Fleming A, Imarisio S, Lopez Ramirez A, Mercer JL, Jimenez-Sanchez M et al (2014) PICALM modulates autophagy activity and tau accumulation. Nat Commun 5:4998. https://doi.org/10.1038/ncomms5998

    Article  CAS  PubMed  Google Scholar 

  197. Watanabe D, Hashimoto S, Ishiai M, Matsushita M, Baba Y, Kishimoto T et al (2001) Four tyrosine residues in phospholipase C-gamma 2, identified as Btk-dependent phosphorylation sites, are required for B cell antigen receptor-coupled calcium signaling. J Biol Chem 276:38595–38601

    Article  CAS  PubMed  Google Scholar 

  198. Fazzari P, Horre K, Arranz AM, Frigerio CS, Saito T, Saido TC et al (2017) PLD3 gene and processing of APP. Nature 541:E1–E2. https://doi.org/10.1038/nature21030

    Article  CAS  PubMed  Google Scholar 

  199. Soni D, Regmi SC, Wang D-M, DebRoy A, Zhao Y-Y, Vogel SM et al (2017) Pyk2 phosphorylation of VE-PTP downstream of STIM1-induced Ca(2+) entry regulates disassembly of adherens junctions. Am J Physiol Lung Cell Mol Physiol 312:L1003–L1017. https://doi.org/10.1152/ajplung.00008.2017

    Article  PubMed  PubMed Central  Google Scholar 

  200. Dikic I, Tokiwa G, Lev S, Courtneidge SA, Schlessinger J (1996) A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature 383:547–550

    Article  CAS  PubMed  Google Scholar 

  201. Kajiho H, Saito K, Tsujita K, Kontani K, Araki Y, Kurosu H et al (2003) RIN3: a novel Rab5 GEF interacting with amphiphysin II involved in the early endocytic pathway. J Cell Sci 116:4159–4168

    Article  CAS  PubMed  Google Scholar 

  202. Li X-F, Kraev AS, Lytton J (2002) Molecular cloning of a fourth member of the potassium-dependent sodium-calcium exchanger gene family, NCKX4. J Biol Chem 277:48410–48417

    Article  CAS  PubMed  Google Scholar 

  203. Taira K, Bujo H, Hirayama S, Yamazaki H, Kanaki T, Takahashi K et al (2001) LR11, a mosaic LDL receptor family member, mediates the uptake of ApoE-rich lipoproteins in vitro. Arterioscler Thromb Vasc Biol 21:1501–1506

    Article  CAS  PubMed  Google Scholar 

  204. Klinger SC, Hojland A, Jain S, Kjolby M, Madsen P, Svendsen AD et al (2016) Polarized trafficking of the sorting receptor SorLA in neurons and MDCK cells. FEBS J 283:2476–2493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Andersen OM, Reiche J, Schmidt V, Gotthardt M, Spoelgen R, Behlke J et al (2005) Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc Natl Acad Sci U S A 102:13461–13466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Caglayan S, Takagi-Niidome S, Liao F, Carlo A-S, Schmidt V, Burgert T et al (2014) Lysosomal sorting of amyloid - by the SORLA receptor is impaired by a familial Alzheimer’s disease mutation. Sci Transl Med 6:223ra20. https://doi.org/10.1126/scitranslmed.3007747

    Article  CAS  PubMed  Google Scholar 

  207. Takahashi K, Rochford CDP, Neumann H (2005) Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 201:647–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. He F, Umehara T, Saito K, Harada T, Watanabe S, Yabuki T et al (2010) Structural insight into the zinc finger CW domain as a histone modification reader. Structure 18:1127–1139

    Article  CAS  PubMed  Google Scholar 

  209. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34:11929–11947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD et al (2016) Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89:37–53

    Article  CAS  PubMed  Google Scholar 

  211. Guillot-Sestier M-V, Doty KR, Gate D, Rodriguez J, Leung BP, Rezai-Zadeh K et al (2015) Il10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology. Neuron 85:534–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Krauthausen M, Kummer MP, Zimmermann J, Reyes-Irisarri E, Terwel D, Bulic B et al (2015) CXCR3 promotes plaque formation and behavioral deficits in an Alzheimer’s disease model. J Clin Invest 125:365–378

    Article  PubMed  Google Scholar 

  213. Choi S-H, Aid S, Caracciolo L, Sakura Minami S, Niikura T, Matsuoka Y et al (2013) Cyclooxygenase-1 inhibition reduces amyloid pathology and improves memory deficits in a mouse model of Alzheimer’s disease. J Neurochem 124:59–68

    Article  CAS  PubMed  Google Scholar 

  214. vom Berg J, Prokop S, Miller KR, Obst J, Kälin RE, Lopategui-Cabezas I et al (2012) Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s disease–like pathology and cognitive decline. Nat Med 18:1812–1819

    Article  CAS  PubMed  Google Scholar 

  215. Yamanaka M, Ishikawa T, Griep A, Axt D, Kummer MP, Heneka MT (2012) PPARγ/RXRα-induced and CD36-mediated microglial amyloid-β phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J Neurosci 32:17321–17331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Chakrabarty P, Herring A, Ceballos-Diaz C, Das P, Golde TE (2011) Hippocampal expression of murine TNFα results in attenuation of amyloid deposition in vivo. Mol Neurodegener 6:16. https://doi.org/10.1186/1750-1326-6-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Chakrabarty P, Ceballos-Diaz C, Beccard A, Janus C, Dickson D, Golde TE et al (2010) IFN-gamma promotes complement expression and attenuates amyloid plaque deposition in amyloid beta precursor protein transgenic mice. J Immunol 184:5333–5343

    Article  CAS  PubMed  Google Scholar 

  218. Chakrabarty P, Jansen-West K, Beccard A, Ceballos-Diaz C, Levites Y, Verbeeck C et al (2010) Massive gliosis induced by interleukin-6 suppresses Abeta deposition in vivo: evidence against inflammation as a driving force for amyloid deposition. FASEB J 24:548–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Kiyota T, Okuyama S, Swan RJ, Jacobsen MT, Gendelman HE, Ikezu T (2010) CNS expression of anti-inflammatory cytokine interleukin-4 attenuates Alzheimer’s disease-like pathogenesis in APP+PS1 bigenic mice. FASEB J 24:3093–3102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Chakrabarty P, Tianbai L, Herring A, Ceballos-Diaz C, Das P, Golde TE (2012) Hippocampal expression of murine IL-4 results in exacerbation of amyloid deposition. Mol Neurodegener 7:36. https://doi.org/10.1186/1750-1326-7-36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Lee S, Varvel NH, Konerth ME, Xu G, Cardona AE, Ransohoff RM et al (2010) CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer’s disease mouse models. Am J Pathol 177:2549–2562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Liu Z, Condello C, Schain A, Harb R, Grutzendler J (2010) CX3CR1 in microglia regulates brain amyloid deposition through selective protofibrillar amyloid- phagocytosis. J Neurosci 30:17091–17101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Boissonneault V, Filali M, Lessard M, Relton J, Wong G, Rivest S (2008) Powerful beneficial effects of macrophage colony-stimulating factor on -amyloid deposition and cognitive impairment in Alzheimer’s disease. Brain 132:1078–1092

    Article  Google Scholar 

  224. Town T, Laouar Y, Pittenger C, Mori T, Szekely CA, Tan J et al (2008) Blocking TGF-β–Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nat Med 14:681–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Wyss-Coray T, Masliah E, Mallory M, McConlogue L, Johnson-Wood K, Lin C et al (1997) Amyloidogenic role of cytokine TGF-beta1 in transgenic mice and in Alzheimer’s disease. Nature 389:603–606

    Article  CAS  PubMed  Google Scholar 

  226. Wyss-Coray T, Lin C, Yan F, Yu G-Q, Rohde M, McConlogue L et al (2001) TGF-β1 promotes microglial amyloid-β clearance and reduces plaque burden in transgenic mice. Nat Med 7:612–618

    Article  CAS  PubMed  Google Scholar 

  227. Jiang T, Zhang Y-D, Gao Q, Zhou J-S, Zhu X-C, Lu H et al (2016) TREM1 facilitates microglial phagocytosis of amyloid beta. Acta Neuropathol 132:667–683

    Article  CAS  PubMed  Google Scholar 

  228. Chakrabarty P, Li A, Ceballos-Diaz C, Eddy JA, Funk CC, Moore B et al (2015) IL-10 alters immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior. Neuron 85:519–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Huang F, Buttini M, Wyss-Coray T, McConlogue L, Kodama T, Pitas RE et al (1999) Elimination of the class A scavenger receptor does not affect amyloid plaque formation or neurodegeneration in transgenic mice expressing human amyloid protein precursors. Am J Pathol 155:1741–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Frenkel D, Wilkinson K, Zhao L, Hickman SE, Means TK, Puckett L et al (2013) Scara1 deficiency impairs clearance of soluble amyloid-β by mononuclear phagocytes and accelerates Alzheimer’s-like disease progression. Nat Commun 4:2030. https://doi.org/10.1038/ncomms3030

    Article  CAS  PubMed  Google Scholar 

  231. Lucin KM, O’Brien CE, Bieri G, Czirr E, Mosher KI, Abbey RJ et al (2013) Microglial Beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer’s disease. Neuron 79:873–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Naert G, Rivest S (2011) CC chemokine receptor 2 deficiency aggravates cognitive impairments and amyloid pathology in a transgenic mouse model of Alzheimer’s disease. J Neurosci 31:6208–6220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Maier M, Peng Y, Jiang L, Seabrook TJ, Carroll MC, Lemere CA (2008) Complement C3 deficiency leads to accelerated amyloid plaque deposition and neurodegeneration and modulation of the microglia/macrophage phenotype in amyloid precursor protein transgenic mice. J Neurosci 28:6333–6341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Shi Q, Chowdhury S, Ma R, Le KX, Hong S, Caldarone BJ et al (2017) Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice. Sci Transl Med 9(392):eaaf6295. https://doi.org/10.1126/scitranslmed.aaf6295

    Article  PubMed  PubMed Central  Google Scholar 

  235. Song M, Jin J, Lim J-E, Kou J, Pattanayak A, Rehman JA et al (2011) TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer’s disease. J Neuroinflammation 8:92. https://doi.org/10.1186/1742-2094-8-92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Zhu Y, Hou H, Rezai-Zadeh K, Giunta B, Ruscin A, Gemma C et al (2011) CD45 deficiency drives amyloid-β peptide oligomers and neuronal loss in Alzheimer’s disease mice. J Neurosci 31:1355–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported in part by Grant-in-Aid for Scientific Research (A) [15H02492 to T.T.] and Grant-in-Aid for Young Scientists (B) [17K15446 to S.T.] from the Japan Society for the Promotion of Science (JSPS), by the Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) from the Japan Agency for Medical Research and Development (AMED) [JP18dm0207014h to T.T.], by the Sunbor Grant from the Suntory Foundation for Life Sciences [to S.T.], by the Uehara Memorial Foundation [to T.T.], and by the Mitsubishi Foundation [to T.T.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taisuke Tomita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takatori, S., Wang, W., Iguchi, A., Tomita, T. (2019). Genetic Risk Factors for Alzheimer Disease: Emerging Roles of Microglia in Disease Pathomechanisms. In: Guest, P. (eds) Reviews on Biomarker Studies in Psychiatric and Neurodegenerative Disorders. Advances in Experimental Medicine and Biology(), vol 1118. Springer, Cham. https://doi.org/10.1007/978-3-030-05542-4_5

Download citation

Publish with us

Policies and ethics