Skip to main content

Delayed Neurologic Complications of Brain Tumor Therapy

  • Chapter
  • First Online:
Oncology of CNS Tumors

Abstract

Radiation therapy and chemotherapy have an important role in the treatment of patients with primary and metastatic brain tumors. However, delayed neurologic complications from these therapies compromise outcomes and impair quality of life, especially in long-term survivors. Common adverse effects of cranial irradiation and chemotherapy include cognitive dysfunction, injury to white matter, progressive brain atrophy, neurovascular complications, and secondary tumors. Treatment options remain limited, but various management strategies are being evaluated in clinical trials. The present chapter summarizes important aspects of each of these challenging adverse effects. Potential mechanisms of neural injury are discussed and management options highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson DR, Sawyer AM, Meyers CA, O’Neill BP, Wefel JS (2012) Early measures of cognitive function predict survival in patients with newly diagnosed glioblastoma. Neuro Oncol 14:808–816

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wefel JS, Noll KR, Rao G, Cahill DP (2016) Neurocognitive function varies by IDH1 genetic mutation status in patients with malignant glioma prior to surgical resection. Neuro Oncol 18:1656–1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kayl AE, Meyers CA (2003) Does brain tumor histology influence cognitive function? Neuro Oncol 5:255–260

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wu AS, Witgert ME, Lang FF et al (2011) Neurocognitive function before and after surgery for insular gliomas. J Neurosurg 115:1115–1125

    Article  PubMed  Google Scholar 

  5. Racine CA, Li J, Molinaro AM, Butowski N, Berger MS (2015) Neurocognitive function in newly diagnosed low-grade glioma patients undergoing surgical resection with awake mapping techniques. Neurosurgery 77:371–379; discussion 9

    Article  PubMed  Google Scholar 

  6. Wefel JS, Kayl AE, Meyers CA (2004) Neuropsychological dysfunction associated with cancer and cancer therapies: a conceptual review of an emerging target. Br J Cancer 90:1691–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wefel JS, Witgert ME, Meyers CA (2008) Neuropsychological sequelae of non-central nervous system cancer and cancer therapy. Neuropsychol Rev 18(2):121–131

    Article  PubMed  Google Scholar 

  8. Noll KR, Sullaway C, Ziu M, Weinberg JS, Wefel JS (2015) Relationships between tumor grade and neurocognitive functioning in patients with glioma of the left temporal lobe prior to surgical resection. Neuro Oncol 17:580–587

    Article  PubMed  Google Scholar 

  9. Tucha O, Smely C, Preier M, Lange KW (2000) Cognitive deficits before treatment among patients with brain tumors. Neurosurgery 47:324–333; discussion 33–4

    Article  CAS  PubMed  Google Scholar 

  10. Shields LB, Choucair AK (2014) Management of low-grade gliomas: a review of patient-perceived quality of life and neurocognitive outcome. World Neurosurg 82:e299–e309

    Article  PubMed  Google Scholar 

  11. Guerrini R, Rosati A, Giordano F, Genitori L, Barba C (2013) The medical and surgical treatment of tumoral seizures: current and future perspectives. Epilepsia 54(Suppl 9):84–90

    Article  PubMed  Google Scholar 

  12. Heimans JJ, Reijneveld JC (2012) Factors affecting the cerebral network in brain tumor patients. J Neurooncol 108:231–237

    Article  PubMed  PubMed Central  Google Scholar 

  13. van Breemen MS, Wilms EB, Vecht CJ (2007) Epilepsy in patients with brain tumours: epidemiology, mechanisms, and management. Lancet Neurol 6:421–430

    Article  PubMed  Google Scholar 

  14. Bosma I, Vos MJ, Heimans JJ et al (2007) The course of neurocognitive functioning in high-grade glioma patients. Neuro Oncol 9:53–62

    Article  PubMed  PubMed Central  Google Scholar 

  15. DeAngelis LM, Delattre JY, Posner JB (1989) Radiation-induced dementia in patients cured of brain metastases. Neurology 39:789–796

    Article  CAS  PubMed  Google Scholar 

  16. Moore BD 3rd, Copeland DR, Ried H, Levy B (1992) Neurophysiological basis of cognitive deficits in long-term survivors of childhood cancer. Arch Neurol 49:809–817

    Article  PubMed  Google Scholar 

  17. Crossen JR, Garwood D, Glatstein E, Neuwelt EA (1994) Neurobehavioral sequelae of cranial irradiation in adults: a review of radiation-induced encephalopathy. J Clin Oncol 12:627–642

    Article  CAS  PubMed  Google Scholar 

  18. Roman DD, Sperduto PW (1995) Neuropsychological effects of cranial radiation: current knowledge and future directions. Int J Radiat Oncol Biol Phys 31:983–998

    Article  CAS  PubMed  Google Scholar 

  19. Abayomi OK (1996) Pathogenesis of irradiation-induced cognitive dysfunction. Acta Oncol 35:659–663

    Article  CAS  PubMed  Google Scholar 

  20. Keime-Guibert F, Napolitano M, Delattre JY (1998) Neurological complications of radiotherapy and chemotherapy. J Neurol 245:695–708

    Article  CAS  PubMed  Google Scholar 

  21. Anderson VA, Godber T, Smibert E, Weiskop S, Ekert H (2000) Cognitive and academic outcome following cranial irradiation and chemotherapy in children: a longitudinal study. Br J Cancer 82:255–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Surma-aho O, Niemela M, Vilkki J et al (2001) Adverse long-term effects of brain radiotherapy in adult low-grade glioma patients. Neurology 56:1285–1290

    Article  CAS  PubMed  Google Scholar 

  23. Laack NN, Brown PD (2004) Cognitive sequelae of brain radiation in adults. Semin Oncol 31:702–713

    Article  PubMed  Google Scholar 

  24. Duffner PK (2004) Long-term effects of radiation therapy on cognitive and endocrine function in children with leukemia and brain tumors. Neurologist 10:293–310

    Article  PubMed  Google Scholar 

  25. Perry A, Schmidt RE (2006) Cancer therapy-associated CNS neuropathology: an update and review of the literature. Acta Neuropathol 111:197–212

    Article  CAS  PubMed  Google Scholar 

  26. Edelstein K, Spiegler BJ, Fung S et al (2011) Early aging in adult survivors of childhood medulloblastoma: long-term neurocognitive, functional, and physical outcomes. Neuro Oncol 13:536–545

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dietrich J, Monje M, Wefel J, Meyers C (2008) Clinical patterns and biological correlates of cognitive dysfunction associated with cancer therapy. Oncologist 13:1285–1295

    Article  PubMed  Google Scholar 

  28. Tallet AV, Azria D, Barlesi F et al (2012) Neurocognitive function impairment after whole brain radiotherapy for brain metastases: actual assessment. Radiat Oncol 7:77

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gondi V, Hermann BP, Mehta MP, Tome WA (2013) Hippocampal dosimetry predicts neurocognitive function impairment after fractionated stereotactic radiotherapy for benign or low-grade adult brain tumors. Int J Radiat Oncol Biol Phys 85:348–354

    Article  PubMed  Google Scholar 

  30. Prust MJ, Jafari-Khouzani K, Kalpathy-Cramer J et al (2015) Standard chemoradiation for glioblastoma results in progressive brain volume loss. Neurology 85:683–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Krull KR, Zhang N, Santucci A et al (2013) Long-term decline in intelligence among adult survivors of childhood acute lymphoblastic leukemia treated with cranial radiation. Blood 122:550–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee AW, Kwong DL, Leung SF et al (2002) Factors affecting risk of symptomatic temporal lobe necrosis: significance of fractional dose and treatment time. Int J Radiat Oncol Biol Phys 53:75–85

    Article  PubMed  Google Scholar 

  33. Lawrence YR, Li XA, el Naqa I et al (2010) Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys 76:S20–S27

    Article  PubMed  PubMed Central  Google Scholar 

  34. Andreassen CN, Alsner J (2009) Genetic variants and normal tissue toxicity after radiotherapy: a systematic review. Radiother Oncol 92:299–309

    Article  CAS  PubMed  Google Scholar 

  35. Barnett GC, West CM, Dunning AM et al (2009) Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat Rev Cancer 9:134–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. West CM, Barnett GC (2011) Genetics and genomics of radiotherapy toxicity: towards prediction. Genome Med 3:52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lai R, Abrey LE, Rosenblum MK, DeAngelis LM (2004) Treatment-induced leukoencephalopathy in primary CNS lymphoma: a clinical and autopsy study. Neurology 62:451–456

    Article  PubMed  Google Scholar 

  38. Sheline GE (1977) Radiation therapy of brain tumors. Cancer 39:873–881

    Article  CAS  PubMed  Google Scholar 

  39. Rubin P, Gash DM, Hansen JT, Nelson DF, Williams JP (1994) Disruption of the blood-brain barrier as the primary effect of CNS irradiation. Radiother Oncol 31:51–60

    Article  CAS  PubMed  Google Scholar 

  40. Behin A, Delattre JY (2004) Complications of radiation therapy on the brain and spinal cord. Semin Neurol 24:405–417

    Article  PubMed  Google Scholar 

  41. Meyers CA, Geara F, Wong PF, Morrison WH (2000) Neurocognitive effects of therapeutic irradiation for base of skull tumors. Int J Radiat Oncol Biol Phys 46:51–55

    Article  CAS  PubMed  Google Scholar 

  42. Gregor A, Cull A, Traynor E, Stewart M, Lander F, Love S (1996) Neuropsychometric evaluation of long-term survivors of adult brain tumours: relationship with tumour and treatment parameters. Radiother Oncol 41:55–59

    Article  CAS  PubMed  Google Scholar 

  43. Armstrong CL, Gyato K, Awadalla AW, Lustig R, Tochner ZA (2004) A critical review of the clinical effects of therapeutic irradiation damage to the brain: the roots of controversy. Neuropsychol Rev 14:65–86

    Article  PubMed  Google Scholar 

  44. Wong CS, Van der Kogel AJ (2004) Mechanisms of radiation injury to the central nervous system: implications for neuroprotection. Mol Interv 4:273–284

    Article  CAS  PubMed  Google Scholar 

  45. Strother DR (2002) Tumors of the central nervous system. In: PPA P, Poplack DG (eds) Principles and Practice of Pediatric Oncology. Lippincott, Williams and Wilkins, Philadelphia, pp 751–824

    Google Scholar 

  46. Dropcho EJ (1991) Central nervous system injury by therapeutic irradiation. Neurol Clin 9:969–988

    Article  CAS  PubMed  Google Scholar 

  47. Constine LS, Konski A, Ekholm S, McDonald S, Rubin P (1988) Adverse effects of brain irradiation correlated with MR and CT imaging. Int J Radiat Oncol Biol Phys 15:319–330

    Article  CAS  PubMed  Google Scholar 

  48. Oppenheimer JH, Levy ML, Sinha U et al (1992) Radionecrosis secondary to interstitial brachytherapy: correlation of magnetic resonance imaging and histopathology. Neurosurgery 31:336–343

    Article  CAS  PubMed  Google Scholar 

  49. Morris JG, Grattan-Smith P, Panegyres PK, O’Neill P, Soo YS, Langlands AO (1994) Delayed cerebral radiation necrosis. Q J Med 87:119–129

    CAS  PubMed  Google Scholar 

  50. Chong VE, Fan YF (1997) Radiation-induced temporal lobe necrosis. AJNR Am J Neuroradiol 18:784–785

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Fouladi M, Chintagumpala M, Laningham FH et al (2004) White matter lesions detected by magnetic resonance imaging after radiotherapy and high-dose chemotherapy in children with medulloblastoma or primitive neuroectodermal tumor. J Clin Oncol 22:4551–4560

    Article  PubMed  Google Scholar 

  52. Dietrich J, Klein JP (2014) Imaging of cancer therapy-induced central nervous system toxicity. Neurol Clin 32:147–157

    Article  PubMed  Google Scholar 

  53. Sneed PK, Suh JH, Goetsch SJ et al (2002) A multi-institutional review of radiosurgery alone vs. radiosurgery with whole brain radiotherapy as the initial management of brain metastases. Int J Radiat Oncol Biol Phys 53:519–526

    Article  PubMed  Google Scholar 

  54. Soffietti R, Ruda R, Trevisan E (2008) Brain metastases: current management and new developments. Curr Opin Oncol 20:676–684

    Article  PubMed  Google Scholar 

  55. McDuff SG, Taich ZJ, Lawson JD et al (2013) Neurocognitive assessment following whole brain radiation therapy and radiosurgery for patients with cerebral metastases. J Neurol Neurosurg Psychiatry 84:1384–1391

    Article  PubMed  Google Scholar 

  56. Monaco EA 3rd, Faraji AH, Berkowitz O et al (2013) Leukoencephalopathy after whole-brain radiation therapy plus radiosurgery versus radiosurgery alone for metastatic lung cancer. Cancer 119:226–232

    Article  PubMed  Google Scholar 

  57. Brown PD, Ballman KV, Cerhan JH et al (2017) Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC.3): a multicentre, randomised, controlled, phase 3 trial. Lancet Oncol 18:1049–1060

    Article  PubMed  PubMed Central  Google Scholar 

  58. Belka C, Budach W, Kortmann RD, Bamberg M (2001) Radiation induced CNS toxicity—molecular and cellular mechanisms. Br J Cancer 85:1233–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Noble M, Dietrich J (2002) Intersections between neurobiology and oncology: tumor origin, treatment and repair of treatment-associated damage. Trends Neurosci 25:103–107

    Article  CAS  PubMed  Google Scholar 

  60. Monje ML, Palmer T (2003) Radiation injury and neurogenesis. Curr Opin Neurol 16:129–134

    Article  PubMed  Google Scholar 

  61. Fike JR, Rola R, Limoli CL (2007) Radiation response of neural precursor cells. Neurosurg Clin N Am 18:115–127

    Article  PubMed  Google Scholar 

  62. Monje M, Dietrich J (2012) Cognitive side effects of cancer therapy demonstrate a functional role for adult neurogenesis. Behav Brain Res 227:376–379

    Article  PubMed  Google Scholar 

  63. Gondi V, Pugh SL, Tome WA et al (2014) Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. J Clin Oncol 32:3810–3816

    Article  PubMed  PubMed Central  Google Scholar 

  64. Attia A, Page BR, Lesser GJ, Chan M (2014) Treatment of radiation-induced cognitive decline. Curr Treat Options Oncol 15:539–550

    Article  PubMed  Google Scholar 

  65. Shaw EG, Rosdhal R, D’Agostino RB Jr et al (2006) Phase II study of donepezil in irradiated brain tumor patients: effect on cognitive function, mood, and quality of life. J Clin Oncol 24:1415–1420

    Article  CAS  PubMed  Google Scholar 

  66. Conklin HM, Reddick WE, Ashford J et al (2010) Long-term efficacy of methylphenidate in enhancing attention regulation, social skills, and academic abilities of childhood cancer survivors. J Clin Oncol 28:4465–4472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Castellino SM, Tooze JA, Flowers L et al (2012) Toxicity and efficacy of the acetylcholinesterase (AChe) inhibitor donepezil in childhood brain tumor survivors: a pilot study. Pediatr Blood Cancer 59:540–547

    Article  PubMed  PubMed Central  Google Scholar 

  68. Gehring K, Patwardhan SY, Collins R et al (2012) A randomized trial on the efficacy of methylphenidate and modafinil for improving cognitive functioning and symptoms in patients with a primary brain tumor. J Neurooncol 107:165–174

    Article  CAS  PubMed  Google Scholar 

  69. Attia A, Rapp SR, Case LD et al (2012) Phase II study of Ginkgo biloba in irradiated brain tumor patients: effect on cognitive function, quality of life, and mood. J Neurooncol 109:357–363

    Article  PubMed  PubMed Central  Google Scholar 

  70. Brown PD, Pugh S, Laack NN et al (2013) Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro Oncol 15:1429–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rapp SR, Case LD, Peiffer A et al (2015) Donepezil for irradiated brain tumor survivors: a phase III randomized placebo-controlled clinical trial. J Clin Oncol 33:1653–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Correa DD, Kryza-Lacombe M, Baser RE, Beal K, DeAngelis LM (2016) Cognitive effects of donepezil therapy in patients with brain tumors: a pilot study. J Neurooncol 127:313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dietrich J, Baryawno N, Nayyar N et al (2018) Bone marrow drives central nervous system regeneration after radiation injury. J Clin Invest 128:281–293

    Article  PubMed  Google Scholar 

  74. Sahnoune I, Inoue T, Kesler SR et al (2018) Exercise ameliorates neurocognitive impairments in a translational model of pediatric radiotherapy. Neuro Oncol 20:695–704

    Article  CAS  PubMed  Google Scholar 

  75. Benzing V, Eggenberger N, Spitzhuttl J et al (2018) The Brainfit study: efficacy of cognitive training and exergaming in pediatric cancer survivors—a randomized controlled trial. BMC Cancer 18:18

    Article  PubMed  PubMed Central  Google Scholar 

  76. Riggs L, Piscione J, Laughlin S et al (2017) Exercise training for neural recovery in a restricted sample of pediatric brain tumor survivors: a controlled clinical trial with crossover of training versus no training. Neuro Oncol 19:440–450

    PubMed  Google Scholar 

  77. Bergo E, Lombardi G, Pambuku A et al (2016) Cognitive rehabilitation in patients with gliomas and other brain tumors: state of the art. Biomed Res Int 2016:3041824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Piil K, Juhler M, Jakobsen J, Jarden M (2016) Controlled rehabilitative and supportive care intervention trials in patients with high-grade gliomas and their caregivers: a systematic review. BMJ Support Palliat Care 6:27–34

    Article  CAS  PubMed  Google Scholar 

  79. Moleski M (2000) Neuropsychological, neuroanatomical, and neurophysiological consequences of CNS chemotherapy for acute lymphoblastic leukemia. Arch Clin Neuropsychol 15:603–630

    Article  CAS  PubMed  Google Scholar 

  80. Ahles TA, Saykin A (2001) Cognitive effects of standard-dose chemotherapy in patients with cancer. Cancer Invest 19:812–820

    Article  CAS  PubMed  Google Scholar 

  81. Wefel JS, Lenzi R, Theriault RL, Davis RN, Meyers CA (2004) The cognitive sequelae of standard-dose adjuvant chemotherapy in women with breast carcinoma: results of a prospective, randomized, longitudinal trial. Cancer 100:2292–2299

    Article  CAS  PubMed  Google Scholar 

  82. Shilling V, Jenkins V, Morris R, Deutsch G, Bloomfield D (2005) The effects of adjuvant chemotherapy on cognition in women with breast cancer—preliminary results of an observational longitudinal study. Breast 14:142–150

    Article  CAS  PubMed  Google Scholar 

  83. Ahles TA, Saykin AJ, McDonald BC et al (2010) Longitudinal assessment of cognitive changes associated with adjuvant treatment for breast cancer: impact of age and cognitive reserve. J Clin Oncol 28:4434–4440

    Article  PubMed  PubMed Central  Google Scholar 

  84. Butler RW, Haser JK (2006) Neurocognitive effects of treatment for childhood cancer. Ment Retard Dev Disabil Res Rev 12:184–191

    Article  PubMed  Google Scholar 

  85. Alvarez JA, Scully RE, Miller TL et al (2007) Long-term effects of treatments for childhood cancers. Curr Opin Pediatr 19:23–31

    Article  PubMed  Google Scholar 

  86. van Dam FS, Schagen SB, Muller MJ et al (1998) Impairment of cognitive function in women receiving adjuvant treatment for high-risk breast cancer: high-dose versus standard-dose chemotherapy. J Natl Cancer Inst 90:210–218

    Article  PubMed  Google Scholar 

  87. Schagen SB, van Dam FS, Muller MJ, Boogerd W, Lindeboom J, Bruning PF (1999) Cognitive deficits after postoperative adjuvant chemotherapy for breast carcinoma. Cancer 85:640–650

    Article  CAS  PubMed  Google Scholar 

  88. Brezden CB, Phillips KA, Abdolell M, Bunston T, Tannock IF (2000) Cognitive function in breast cancer patients receiving adjuvant chemotherapy. J Clin Oncol 18:2695–2701

    Article  CAS  PubMed  Google Scholar 

  89. Schagen SB, Muller MJ, Boogerd W et al (2002) Late effects of adjuvant chemotherapy on cognitive function: a follow-up study in breast cancer patients. Ann Oncol 13:1387–1397

    Article  CAS  PubMed  Google Scholar 

  90. Anderson-Hanley C, Sherman ML, Riggs R, Agocha VB, Compas BE (2003) Neuropsychological effects of treatments for adults with cancer: a meta-analysis and review of the literature. J Int Neuropsychol Soc : JINS 9:967–982

    Article  PubMed  Google Scholar 

  91. Tannock IF, Ahles TA, Ganz PA, Van Dam FS (2004) Cognitive impairment associated with chemotherapy for cancer: report of a workshop. J Clin Oncol 22:2233–2239

    Article  PubMed  Google Scholar 

  92. Schagen SB, Muller MJ, Boogerd W, Mellenbergh GJ, van Dam FS (2006) Change in cognitive function after chemotherapy: a prospective longitudinal study in breast cancer patients. J Natl Cancer Inst 98:1742–1745

    Article  CAS  PubMed  Google Scholar 

  93. Hurria A, Rosen C, Hudis C et al (2006) Cognitive function of older patients receiving adjuvant chemotherapy for breast cancer: a pilot prospective longitudinal study. J Am Geriatr Soc 54:925–931

    Article  PubMed  Google Scholar 

  94. Ahles TA, Saykin AJ (2007) Candidate mechanisms for chemotherapy-induced cognitive changes. Nat Rev Cancer 7:192–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Vardy J, Wefel JS, Ahles T, Tannock IF, Schagen SB (2008) Cancer and cancer-therapy related cognitive dysfunction: an international perspective from the Venice cognitive workshop. Ann Oncol 19:623–629

    Article  CAS  PubMed  Google Scholar 

  96. Meyers CA, Abbruzzese JL (1992) Cognitive functioning in cancer patients: effect of previous treatment. Neurology 42:434–436

    Article  CAS  PubMed  Google Scholar 

  97. Heflin LH, Meyerowitz BE, Hall P et al (2005) Cancer as a risk factor for long-term cognitive deficits and dementia. J Natl Cancer Inst 97:854–856

    Article  PubMed  Google Scholar 

  98. Roe CM, Behrens MI, Xiong C, Miller JP, Morris JC (2005) Alzheimer disease and cancer. Neurology 64:895–898

    Article  CAS  PubMed  Google Scholar 

  99. Wefel JS, Meyers CA (2005) Cancer as a risk factor for dementia: a house built on shifting sand. J Natl Cancer Inst 97:788–789

    Article  PubMed  Google Scholar 

  100. Matsuda T, Takayama T, Tashiro M, Nakamura Y, Ohashi Y, Shimozuma K (2005) Mild cognitive impairment after adjuvant chemotherapy in breast cancer patients—evaluation of appropriate research design and methodology to measure symptoms. Breast Cancer 12:279–287

    Article  PubMed  Google Scholar 

  101. Hermelink K, Untch M, Lux MP et al (2007) Cognitive function during neoadjuvant chemotherapy for breast cancer: results of a prospective, multicenter, longitudinal study. Cancer 109:1905–1913

    Article  CAS  PubMed  Google Scholar 

  102. Vardy J, Rourke S, Tannock IF (2007) Evaluation of cognitive function associated with chemotherapy: a review of published studies and recommendations for future research. J Clin Oncol 25:2455–2463

    Article  PubMed  Google Scholar 

  103. Jansen CE, Dodd MJ, Miaskowski CA, Dowling GA, Kramer J (2008) Preliminary results of a longitudinal study of changes in cognitive function in breast cancer patients undergoing chemotherapy with doxorubicin and cyclophosphamide. Psychooncology 17:1189–1195

    Article  PubMed  Google Scholar 

  104. Wefel JS, Saleeba AK, Buzdar AU, Meyers CA (2010) Acute and late onset cognitive dysfunction associated with chemotherapy in women with breast cancer. Cancer 116:3348–3356

    Article  PubMed  Google Scholar 

  105. Hutchinson AD, Hosking JR, Kichenadasse G, Mattiske JK, Wilson C (2012) Objective and subjective cognitive impairment following chemotherapy for cancer: a systematic review. Cancer Treat Rev 38:926–934

    Article  PubMed  Google Scholar 

  106. Koppelmans V, Breteler MM, Boogerd W, Seynaeve C, Gundy C, Schagen SB (2012) Neuropsychological performance in survivors of breast cancer more than 20 years after adjuvant chemotherapy. J Clin Oncol 30:1080–1086

    Article  PubMed  Google Scholar 

  107. Seigers R, Schagen SB, Van Tellingen O, Dietrich J (2013) Chemotherapy-related cognitive dysfunction: current animal studies and future directions. Brain Imaging Behav 7:453–459

    Article  CAS  PubMed  Google Scholar 

  108. Dietrich J, Han R, Yang Y, Mayer-Proschel M, Noble M (2006) CNS progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and in vivo. J Biol 5:22

    Article  PubMed  PubMed Central  Google Scholar 

  109. Han R, Yang YM, Dietrich J, Luebke A, Mayer-Proschel M, Noble M (2008) Systemic 5-fluorouracil treatment causes a syndrome of delayed myelin destruction in the central nervous system. J Biol 7:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Seigers R, Schagen SB, Beerling W et al (2008) Long-lasting suppression of hippocampal cell proliferation and impaired cognitive performance by methotrexate in the rat. Behav Brain Res 186:168–175

    Article  CAS  PubMed  Google Scholar 

  111. Winocur G, Vardy J, Binns MA, Kerr L, Tannock I (2006) The effects of the anti-cancer drugs, methotrexate and 5-fluorouracil, on cognitive function in mice. Pharmacol Biochem Behav 85:66–75

    Article  CAS  PubMed  Google Scholar 

  112. Fardell JE, Vardy J, Logge W, Johnston I (2010) Single high dose treatment with methotrexate causes long-lasting cognitive dysfunction in laboratory rodents. Pharmacol Biochem Behav 97:333–339

    Article  CAS  PubMed  Google Scholar 

  113. Dietrich J, Prust M, Kaiser J (2015) Chemotherapy, cognitive impairment and hippocampal toxicity. Neuroscience 309:224–232

    Article  CAS  PubMed  Google Scholar 

  114. Chen Y, Lomnitski L, Michaelson DM, Shohami E (1997) Motor and cognitive deficits in apolipoprotein E-deficient mice after closed head injury. Neuroscience 80:1255–1262

    Article  CAS  PubMed  Google Scholar 

  115. Hoffmeyer S, Burk O, von Richter O et al (2000) Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A 97:3473–3478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ahles TA, Saykin AJ, Noll WW et al (2003) The relationship of APOE genotype to neuropsychological performance in long-term cancer survivors treated with standard dose chemotherapy. Psychooncology 12:612–619

    Article  PubMed  Google Scholar 

  117. McAllister TW, Ahles TA, Saykin AJ et al (2004) Cognitive effects of cytotoxic cancer chemotherapy: predisposing risk factors and potential treatments. Curr Psychiatry Rep 6:364–371

    Article  PubMed  Google Scholar 

  118. Okcu MF, Selvan M, Wang LE et al (2004) Glutathione S-transferase polymorphisms and survival in primary malignant glioma. Clin Cancer Res 10:2618–2625

    Article  CAS  PubMed  Google Scholar 

  119. Muramatsu T, Johnson DR, Finch RA et al (2004) Age-related differences in vincristine toxicity and biodistribution in wild-type and transporter-deficient mice. Oncol Res 14:331–343

    Article  CAS  PubMed  Google Scholar 

  120. Jamroziak K, Balcerczak E, Cebula B et al (2005) Multi-drug transporter MDR1 gene polymorphism and prognosis in adult acute lymphoblastic leukemia. Pharmacol Rep 57:882–888

    CAS  PubMed  Google Scholar 

  121. Linnebank M, Pels H, Kleczar N et al (2005) MTX-induced white matter changes are associated with polymorphisms of methionine metabolism. Neurology 64:912–913

    Article  CAS  PubMed  Google Scholar 

  122. Krajinovic M, Robaey P, Chiasson S et al (2005) Polymorphisms of genes controlling homocysteine levels and IQ score following the treatment for childhood ALL. Pharmacogenomics 6:293–302

    Article  CAS  PubMed  Google Scholar 

  123. Largillier R, Etienne-Grimaldi MC, Formento JL et al (2006) Pharmacogenetics of capecitabine in advanced breast cancer patients. Clin Cancer Res 12:5496–5502

    Article  CAS  PubMed  Google Scholar 

  124. Fishel ML, Vasko MR, Kelley MR (2007) DNA repair in neurons: so if they don’t divide what’s to repair? Mutat Res 614:24–36

    Article  CAS  PubMed  Google Scholar 

  125. Abrey LE, Batchelor TT, Ferreri AJ et al (2005) Report of an international workshop to standardize baseline evaluation and response criteria for primary CNS lymphoma. J Clin Oncol 23:5034–5043

    Article  PubMed  Google Scholar 

  126. Correa DD, Maron L, Harder H et al (2007) Cognitive functions in primary central nervous system lymphoma: literature review and assessment guidelines. Ann Oncol 18:1145–1151

    Article  CAS  PubMed  Google Scholar 

  127. Krull KR, Okcu MF, Potter B et al (2008) Screening for neurocognitive impairment in pediatric cancer long-term survivors. J Clin Oncol 26:4138–4143

    Article  PubMed  Google Scholar 

  128. Wefel JS, Vardy J, Ahles T, Schagen SB (2011) International Cognition and Cancer Task Force recommendations to harmonise studies of cognitive function in patients with cancer. Lancet Oncol 12:703–708

    Article  PubMed  Google Scholar 

  129. Lawrence JA, Griffin L, Balcueva EP et al (2016) A study of donepezil in female breast cancer survivors with self-reported cognitive dysfunction 1 to 5 years following adjuvant chemotherapy. J Cancer Surviv 10:176–184

    Article  CAS  PubMed  Google Scholar 

  130. Iyer NS, Balsamo LM, Bracken MB, Kadan-Lottick NS (2015) Chemotherapy-only treatment effects on long-term neurocognitive functioning in childhood ALL survivors: a review and meta-analysis. Blood 126:346–353

    Article  CAS  PubMed  Google Scholar 

  131. Escalante CP, Meyers C, Reuben JM et al (2014) A randomized, double-blind, 2-period, placebo-controlled crossover trial of a sustained-release methylphenidate in the treatment of fatigue in cancer patients. Cancer J 20:8–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kohli S, Fisher SG, Tra Y et al (2009) The effect of modafinil on cognitive function in breast cancer survivors. Cancer 115:2605–2616

    Article  CAS  PubMed  Google Scholar 

  133. Lundorff LE, Jonsson BH, Sjogren P (2009) Modafinil for attentional and psychomotor dysfunction in advanced cancer: a double-blind, randomised, cross-over trial. Palliat Med 23:731–738

    Article  CAS  PubMed  Google Scholar 

  134. Lower EE, Fleishman S, Cooper A et al (2009) Efficacy of dexmethylphenidate for the treatment of fatigue after cancer chemotherapy: a randomized clinical trial. J Pain Symptom Manage 38:650–662

    Article  CAS  PubMed  Google Scholar 

  135. Conklin HM, Khan RB, Reddick WE et al (2007) Acute neurocognitive response to methylphenidate among survivors of childhood cancer: a randomized, double-blind, cross-over trial. J Pediatr Psychol 32:1127–1139

    Article  PubMed  Google Scholar 

  136. Mulhern RK, Khan RB, Kaplan S et al (2004) Short-term efficacy of methylphenidate: a randomized, double-blind, placebo-controlled trial among survivors of childhood cancer. J Clin Oncol 22:4795–4803

    Article  CAS  PubMed  Google Scholar 

  137. Schwartz AL, Thompson JA, Masood N (2002) Interferon-induced fatigue in patients with melanoma: a pilot study of exercise and methylphenidate. Oncol Nurs Forum 29:E85–E90

    Article  PubMed  Google Scholar 

  138. Meyers CA, Weitzner MA, Valentine AD, Levin VA (1998) Methylphenidate therapy improves cognition, mood, and function of brain tumor patients. J Clin Oncol 16:2522–2527

    Article  CAS  PubMed  Google Scholar 

  139. Ferguson RJ, Ahles TA, Saykin AJ et al (2007) Cognitive-behavioral management of chemotherapy-related cognitive change. Psychooncology 16:772–777

    Article  PubMed  PubMed Central  Google Scholar 

  140. Evans JJ, Wilson BA, Needham P, Brentnall S (2003) Who makes good use of memory aids? Results of a survey of people with acquired brain injury. J Int Neuropsychol Soc JINS 9:925–935

    Article  PubMed  Google Scholar 

  141. Biegler KA, Chaoul MA, Cohen L (2009) Cancer, cognitive impairment, and meditation. Acta Oncol 48:18–26

    Article  PubMed  Google Scholar 

  142. Hsieh CC, Sprod LK, Hydock DS, Carter SD, Hayward R, Schneider CM (2008) Effects of a supervised exercise intervention on recovery from treatment regimens in breast cancer survivors. Oncol Nurs Forum 35:909–915

    Article  PubMed  PubMed Central  Google Scholar 

  143. Mitchell SA (2010) Cancer-related fatigue: state of the science. PM R 2:364–383

    Article  PubMed  Google Scholar 

  144. Arrillaga-Romany IC, Dietrich J (2012) Imaging findings in cancer therapy-associated neurotoxicity. Semin Neurol 32:476–486

    Article  PubMed  Google Scholar 

  145. Perrini P, Scollato A, Cioffi F, Mouchaty H, Conti R, Di Lorenzo N (2002) Radiation leukoencephalopathy associated with moderate hydrocephalus: intracranial pressure monitoring and results of ventriculoperitoneal shunting. Neurol Sci 23:237–241

    Article  CAS  PubMed  Google Scholar 

  146. Cummings M, Dougherty DW, Mohile NA, Walter KA, Usuki KY, Milano MT (2016) Severe radiation-induced leukoencephalopathy: case report and literature review. Adv Radiat Oncol 1:17–20

    Article  PubMed  PubMed Central  Google Scholar 

  147. Thiessen B, DeAngelis LM (1998) Hydrocephalus in radiation leukoencephalopathy: results of ventriculoperitoneal shunting. Arch Neurol 55:705–710

    Article  CAS  PubMed  Google Scholar 

  148. Sabsevitz DS, Bovi JA, Leo PD et al (2013) The role of pre-treatment white matter abnormalities in developing white matter changes following whole brain radiation: a volumetric study. J Neurooncol 114:291–297

    Article  PubMed  Google Scholar 

  149. Miller RC, Lachance DH, Lucchinetti CF et al (2006) Multiple sclerosis, brain radiotherapy, and risk of neurotoxicity: the Mayo Clinic experience. Int J Radiat Oncol Biol Phys 66:1178–1186

    Article  PubMed  Google Scholar 

  150. Valk PE, Dillon WP (1991) Radiation injury of the brain. AJNR Am J Neuroradiol 12:45–62

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Harder H, Holtel H, Bromberg JE et al (2004) Cognitive status and quality of life after treatment for primary CNS lymphoma. Neurology 62:544–547

    Article  CAS  PubMed  Google Scholar 

  152. Douw L, Klein M, Fagel SS et al (2009) Cognitive and radiological effects of radiotherapy in patients with low-grade glioma: long-term follow-up. Lancet Neurol 8:810–818

    Article  PubMed  Google Scholar 

  153. Mamlouk MD, Handwerker J, Ospina J, Hasso AN (2013) Neuroimaging findings of the post-treatment effects of radiation and chemotherapy of malignant primary glial neoplasms. Neuroradiol J 26:396–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Fischer CM, Neidert MC, Peus D et al (2014) Hydrocephalus after resection and adjuvant radiochemotherapy in patients with glioblastoma. Clin Neurol Neurosurg 120:27–31

    Article  PubMed  Google Scholar 

  155. Ailion AS, King TZ, Wang L et al (2016) Cerebellar atrophy in adult survivors of childhood cerebellar tumor. J Int Neuropsychol Soc JINS 22:501–511

    Article  PubMed  Google Scholar 

  156. Karunamuni R, Bartsch H, White NS et al (2016) Dose-dependent cortical thinning after partial brain irradiation in high-grade glioma. Int J Radiat Oncol Biol Phys 94:297–304

    Article  PubMed  Google Scholar 

  157. Omuro AM, Ben-Porat LS, Panageas KS et al (2005) Delayed neurotoxicity in primary central nervous system lymphoma. Arch Neurol 62:1595–1600

    Article  PubMed  Google Scholar 

  158. Shibamoto Y, Baba F, Oda K et al (2008) Incidence of brain atrophy and decline in mini-mental state examination score after whole-brain radiotherapy in patients with brain metastases: a prospective study. Int J Radiat Oncol Biol Phys 72:1168–1173

    Article  PubMed  Google Scholar 

  159. Swennen MH, Bromberg JE, Witkamp TD, Terhaard CH, Postma TJ, Taphoorn MJ (2004) Delayed radiation toxicity after focal or whole brain radiotherapy for low-grade glioma. J Neurooncol 66:333–339

    Article  CAS  PubMed  Google Scholar 

  160. Prust ML, Jafari-Khouzani K, Kalpathy-Cramer J et al (2018) Standard chemoradiation in combination with VEGF targeted therapy for glioblastoma results in progressive gray and white matter volume loss. Neuro Oncol 20:289–291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Dietrich J, Winter SF, Klein JP (2017) Neuroimaging of brain tumors: pseudoprogression, pseudoresponse, and delayed effects of chemotherapy and radiation. Semin Neurol 37:589–596

    Article  PubMed  Google Scholar 

  162. Herrlinger U, Kuker W, Uhl M et al (2005) NOA-03 trial of high-dose methotrexate in primary central nervous system lymphoma: final report. Ann Neurol 57:843–847

    Article  CAS  PubMed  Google Scholar 

  163. Hertzberg H, Huk WJ, Ueberall MA et al (1997) CNS late effects after ALL therapy in childhood. Part I: neuroradiological findings in long-term survivors of childhood ALL—an evaluation of the interferences between morphology and neuropsychological performance. The German Late Effects Working Group. Med Pediatr Oncol 28:387–400

    Article  CAS  PubMed  Google Scholar 

  164. Kaiser J, Bledowski C, Dietrich J (2014) Neural correlates of chemotherapy-related cognitive impairment. Cortex 54:33–50

    Article  PubMed  Google Scholar 

  165. Horky LL, Gerbaudo VH, Zaitsev A et al (2014) Systemic chemotherapy decreases brain glucose metabolism. Ann Clin Transl Neurol 1:788–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Seibert TM, Karunamuni R, Bartsch H et al (2017) Radiation dose-dependent hippocampal atrophy detected with longitudinal volumetric magnetic resonance imaging. Int J Radiat Oncol Biol Phys 97:263–269

    Article  PubMed  Google Scholar 

  167. Seibert TM, Karunamuni R, Kaifi S et al (2017) Cerebral cortex regions selectively vulnerable to radiation dose-dependent atrophy. Int J Radiat Oncol Biol Phys 97:910–918

    Article  PubMed  PubMed Central  Google Scholar 

  168. Rahmathulla G, Marko NF, Weil RJ (2013) Cerebral radiation necrosis: a review of the pathobiology, diagnosis and management considerations. J Clin Neurosci 20:485–502

    Article  PubMed  Google Scholar 

  169. Furuse M, Nonoguchi N, Kawabata S, Miyatake S, Kuroiwa T (2015) Delayed brain radiation necrosis: pathological review and new molecular targets for treatment. Med Mol Morphol 48:183–190

    Article  CAS  PubMed  Google Scholar 

  170. Eisele SC, Dietrich J (2015) Cerebral radiation necrosis: diagnostic challenge and clinical management. Rev Neurol 61:225–232

    CAS  PubMed  Google Scholar 

  171. Lee AW, Foo W, Chappell R et al (1998) Effect of time, dose, and fractionation on temporal lobe necrosis following radiotherapy for nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 40:35–42

    Article  CAS  PubMed  Google Scholar 

  172. Tuan JK, Ha TC, Ong WS et al (2012) Late toxicities after conventional radiation therapy alone for nasopharyngeal carcinoma. Radiother Oncol 104:305–311

    Article  PubMed  Google Scholar 

  173. Giglio P, Gilbert MR (2003) Cerebral radiation necrosis. Neurologist 9:180–188

    Article  PubMed  Google Scholar 

  174. Nordal RA, Nagy A, Pintilie M, Wong CS (2004) Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury: a role for vascular endothelial growth factor. Clin Cancer Res 10:3342–3353

    Article  CAS  PubMed  Google Scholar 

  175. Torcuator R, Zuniga R, Mohan YS et al (2009) Initial experience with bevacizumab treatment for biopsy confirmed cerebral radiation necrosis. J Neurooncol 94:63–68

    Article  CAS  PubMed  Google Scholar 

  176. Marks JE, Baglan RJ, Prassad SC, Blank WF (1981) Cerebral radionecrosis: incidence and risk in relation to dose, time, fractionation and volume. Int J Radiat Oncol Biol Phys 7:243–252

    Article  CAS  PubMed  Google Scholar 

  177. Kumar AJ, Leeds NE, Fuller GN et al (2000) Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 217:377–384

    Article  CAS  PubMed  Google Scholar 

  178. Ruben JD, Dally M, Bailey M, Smith R, McLean CA, Fedele P (2006) Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int J Radiat Oncol Biol Phys 65:499–508

    Article  PubMed  Google Scholar 

  179. Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9:453–461

    Article  PubMed  Google Scholar 

  180. Blonigen BJ, Steinmetz RD, Levin L, Lamba MA, Warnick RE, Breneman JC (2010) Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 77:996–1001

    Article  PubMed  Google Scholar 

  181. Minniti G, Clarke E, Lanzetta G et al (2011) Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis. Radiat Oncol 6:48

    Article  PubMed  PubMed Central  Google Scholar 

  182. Fink J, Born D, Chamberlain MC (2012) Radiation necrosis: relevance with respect to treatment of primary and secondary brain tumors. Curr Neurol Neurosci Rep 12:276–285

    Article  PubMed  Google Scholar 

  183. Mullins ME, Barest GD, Schaefer PW, Hochberg FH, Gonzalez RG, Lev MH (2005) Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis. AJNR Am J Neuroradiol 26:1967–1972

    PubMed  PubMed Central  Google Scholar 

  184. Dequesada IM, Quisling RG, Yachnis A, Friedman WA (2008) Can standard magnetic resonance imaging reliably distinguish recurrent tumor from radiation necrosis after radiosurgery for brain metastases? A radiographic-pathological study. Neurosurgery 63:898–903; discussion 4

    Article  PubMed  Google Scholar 

  185. Verma N, Cowperthwaite MC, Burnett MG, Markey MK (2013) Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. Neuro Oncol 15:515–534

    Article  PubMed  PubMed Central  Google Scholar 

  186. Barajas RF Jr, Chang JS, Segal MR et al (2009) Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 253:486–496

    Article  PubMed  PubMed Central  Google Scholar 

  187. Barajas RF, Chang JS, Sneed PK, Segal MR, McDermott MW, Cha S (2009) Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 30:367–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Mitsuya K, Nakasu Y, Horiguchi S et al (2010) Perfusion weighted magnetic resonance imaging to distinguish the recurrence of metastatic brain tumors from radiation necrosis after stereotactic radiosurgery. J Neurooncol 99:81–88

    Article  PubMed  Google Scholar 

  189. Larsen VA, Simonsen HJ, Law I, Larsson HB, Hansen AE (2013) Evaluation of dynamic contrast-enhanced T1-weighted perfusion MRI in the differentiation of tumor recurrence from radiation necrosis. Neuroradiology 55:361–369

    Article  PubMed  Google Scholar 

  190. Zeng QS, Li CF, Zhang K, Liu H, Kang XS, Zhen JH (2007) Multivoxel 3D proton MR spectroscopy in the distinction of recurrent glioma from radiation injury. J Neurooncol 84:63–69

    Article  CAS  PubMed  Google Scholar 

  191. Smith EA, Carlos RC, Junck LR, Tsien CI, Elias A, Sundgren PC (2009) Developing a clinical decision model: MR spectroscopy to differentiate between recurrent tumor and radiation change in patients with new contrast-enhancing lesions. AJR Am J Roentgenol 192:W45–W52

    Article  PubMed  Google Scholar 

  192. Rock JP, Scarpace L, Hearshen D et al (2004) Associations among magnetic resonance spectroscopy, apparent diffusion coefficients, and image-guided histopathology with special attention to radiation necrosis. Neurosurgery 54:1111–1117; discussion 7–9

    Article  PubMed  Google Scholar 

  193. Ricci PE, Karis JP, Heiserman JE, Fram EK, Bice AN, Drayer BP (1998) Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR Am J Neuroradiol 19:407–413

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Chen W, Silverman DH, Delaloye S et al (2006) 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 47:904–911

    CAS  PubMed  Google Scholar 

  195. Terakawa Y, Tsuyuguchi N, Iwai Y et al (2008) Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49:694–699

    Article  PubMed  Google Scholar 

  196. Kim YH, Oh SW, Lim YJ et al (2010) Differentiating radiation necrosis from tumor recurrence in high-grade gliomas: assessing the efficacy of 18F-FDG PET, 11C-methionine PET and perfusion MRI. Clin Neurol Neurosurg 112:758–765

    Article  PubMed  Google Scholar 

  197. Lizarraga KJ, Allen-Auerbach M, Czernin J et al (2014) (18)F-FDOPA PET for differentiating recurrent or progressive brain metastatic tumors from late or delayed radiation injury after radiation treatment. J Nucl Med 55:30–36

    Article  CAS  PubMed  Google Scholar 

  198. Campen CJ, Kranick SM, Kasner SE et al (2012) Cranial irradiation increases risk of stroke in pediatric brain tumor survivors. Stroke 43:3035–3040

    Article  PubMed  PubMed Central  Google Scholar 

  199. Mueller S, Fullerton HJ, Stratton K et al (2013) Radiation, atherosclerotic risk factors, and stroke risk in survivors of pediatric cancer: a report from the Childhood Cancer Survivor Study. Int J Radiat Oncol Biol Phys 86:649–655

    Article  PubMed  PubMed Central  Google Scholar 

  200. Mueller S, Sear K, Hills NK et al (2013) Risk of first and recurrent stroke in childhood cancer survivors treated with cranial and cervical radiation therapy. Int J Radiat Oncol Biol Phys 86:643–648

    Article  PubMed  PubMed Central  Google Scholar 

  201. Murphy ES, Xie H, Merchant TE, Yu JS, Chao ST, Suh JH (2015) Review of cranial radiotherapy-induced vasculopathy. J Neurooncol 122:421–429

    Article  CAS  PubMed  Google Scholar 

  202. Roongpiboonsopit D, Kuijf HJ, Charidimou A et al (2017) Evolution of cerebral microbleeds after cranial irradiation in medulloblastoma patients. Neurology 88:789–796

    Article  PubMed  PubMed Central  Google Scholar 

  203. Ron E, Modan B, Boice JD Jr et al (1988) Tumors of the brain and nervous system after radiotherapy in childhood. N Engl J Med 319:1033–1039

    Article  CAS  PubMed  Google Scholar 

  204. Yamanaka R, Hayano A, Kanayama T (2017) Radiation-induced meningiomas: an exhaustive review of the literature. World Neurosurg 97:635–44 e8

    Article  PubMed  Google Scholar 

  205. Patel AJ, Rao VY, Fox BD et al (2011) Radiation-induced osteosarcomas of the calvarium and skull base. Cancer 117:2120–2126

    Article  PubMed  Google Scholar 

  206. Yamanaka R, Hayano A (2017) Radiation-induced sarcomas of the central nervous system: a systematic review. World Neurosurg 98:818–28 e7

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Dietrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dietrich, J., Winter, S.F., Parsons, M.W. (2019). Delayed Neurologic Complications of Brain Tumor Therapy. In: Tonn, JC., Reardon, D., Rutka, J., Westphal, M. (eds) Oncology of CNS Tumors. Springer, Cham. https://doi.org/10.1007/978-3-030-04152-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04152-6_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04151-9

  • Online ISBN: 978-3-030-04152-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics