Skip to main content

Advertisement

Log in

Chemotherapy-related cognitive dysfunction: current animal studies and future directions

  • SI: Neuroimaging Studies of Cancer and Cancer Treatment
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Cognitive impairment is a potential long-term side effect of adjuvant chemotherapy that can have a major impact on the quality of life of cancer survivors. There is a growing number of preclinical studies addressing this issue, thereby extending our knowledge of the mechanisms underlying chemotherapy-induced neurotoxicity. In this review, we will summarize the recent advances and important findings presented in these studies. Emerging challenges, such as the development of neuroprotective strategies, and the role of the blood-brain barrier on cognitive impairment will be described and future directions in this field of investigation will be outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahles, T. A., & Saykin, A. J. (2007). Candidate mechanisms for chemotherapy-induced cognitive changes. Nature Reviews Cancer, 7, 192–201.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ahles, T. A., Saykin, A. J., Furstenberg, C. T., Cole, B., Mott, L. A., Skalla, K., et al. (2002). Neuropsychologic impact of standard-dose systemic chemotherapy in long-term survivors of breast cancer and lymphoma. Journal of Clinical Oncology, 20, 485–493.

    Article  CAS  PubMed  Google Scholar 

  • Ahles, T. A., Saykin, A. J., McDonald, B. C., Li, Y., Furstenberg, C. T., Hanscom, B. S., et al. (2010). Longitudinal assessment of cognitive changes associated with adjuvant treatment for breast cancer: impact of age and cognitive reserve. Journal of Clinical Oncology, 28, 4434–4440.

    Article  PubMed  Google Scholar 

  • Akiba, T., Okeda, R., & Tajima, T. (1996). Metabolites of 5-fluorouracil, alpha-fluoro-beta-alanine and fluoroacetic acid, directly injure myelinated fibers in tissue culture. Acta Neuropathologica, 92, 8–13.

    Article  CAS  PubMed  Google Scholar 

  • Aluise, C. D., Miriyala, S., Noel, T., Sultana, R., Jungsuwadee, P., Taylor, T. J., et al. (2011). 2-Mercaptoethane sulfonate prevents doxorubicin-induced plasma protein oxidation and TNF-alpha release: implications for the reactive oxygen species-mediated mechanisms of chemobrain. Free Radical Biology and Medicine, 50, 1630–1638.

    Article  CAS  PubMed  Google Scholar 

  • Bhatia, A. L., Manda, K., Patni, S., & Sharma, A. L. (2006). Prophylactic action of linseed (Linum usitatissimum) oil against cyclophosphamide-induced oxidative stress in mouse brain. Journal of Medicinal Food, 9, 261–264.

    Article  CAS  PubMed  Google Scholar 

  • Briones, T. L., & Woods, J. (2011). Chemotherapy-induced cognitive impairment is associated with decreases in cell proliferation and histone modifications. BMC Neuroscience, 12, 124.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cata, J. P., Weng, H. R., & Dougherty, P. M. (2008). The effects of thalidomide and minocycline on taxol-induced hyperalgesia in rats. Brain Research, 1229, 100–110.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Christie, L. A., Acharya, M. M., Parihar, V. K., Nguyen, A., Martirosian, V., & Limoli, C. L. (2012). Impaired cognitive function and hippocampal neurogenesis following cancer chemotherapy. Clinical Cancer Research, 18, 1954–1965.

    Article  CAS  PubMed  Google Scholar 

  • Das, S., & Basu, A. (2008). Inflammation: a new candidate in modulating adult neurogenesis. Journal of Neuroscience Research, 86, 1199–1208.

    Article  CAS  PubMed  Google Scholar 

  • de Vos, F. Y., Willemse, P. H., De Vries, E. G., & Gietema, J. A. (2004). Endothelial cell effects of cytotoxics: balance between desired and unwanted effects. Cancer Treatment Reviews, 30, 495–513.

    Article  PubMed  Google Scholar 

  • Dietrich, J., Han, R., Yang, Y., Mayer-Proschel, M., & Noble, M. (2006). CNS progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and in vivo. Journal of Biological, 5, 22.

    Article  Google Scholar 

  • Dietrich, J., Monje, M., Wefel, J., & Meyers, C. (2008). Clinical patterns and biological correlates of cognitive dysfunction associated with cancer therapy. Oncologist, 13, 1285–1295.

    Article  PubMed  Google Scholar 

  • Eijkenboom, M., & Van Der Staay, F. J. (1999). Spatial learning deficits in rats after injection of vincristine into the dorsal hippocampus. Neuroscience, 91, 1299–1313.

    Article  CAS  PubMed  Google Scholar 

  • Ekdahl, C. T., Claasen, J. H., Bonde, S., Kokaia, Z., & Lindvall, O. (2003). Inflammation is detrimental for neurogenesis in adult brain. Proceedings of the National Academy of Sciences of the United States of America, 100, 13632–13637.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • ElBeltagy, M., Mustafa, S., Umka, J., Lyons, L., Salman, A., Chur-yoe, G. T., et al. (2010). Fluoxetine improves the memory deficits caused by the chemotherapy agent 5-fluorouracil. Behavioural Brain Research, 208, 112–117.

    Article  CAS  PubMed  Google Scholar 

  • ElBeltagy, M., Mustafa, S., Umka, J., Lyons, L., Salman, A., Dormon, K., et al. (2012). The effect of 5-fluorouracil on the long term survival and proliferation of cells in the rat hippocampus. Brain Research Bulletin, 88, 514–518.

    Article  CAS  PubMed  Google Scholar 

  • Gandal, M. J., Ehrlichman, R. S., Rudnick, N. D., & Siegel, S. J. (2008). A novel electrophysiological model of chemotherapy-induced cognitive impairments in mice. Neuroscience, 157, 95–104.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gietema, J. A., Meinardi, M. T., Messerschmidt, J., Gelevert, T., Alt, F., Uges, D. R., et al. (2000). Circulating plasma platinum more than 10 years after cisplatin treatment for testicular cancer. Lancet, 355, 1075–1076.

    Article  CAS  PubMed  Google Scholar 

  • Han, R., Yang, Y. M., Dietrich, J., Luebke, A., Mayer-Proschel, M., & Noble, M. (2008). Systemic 5-fluorouracil treatment causes a syndrome of delayed myelin destruction in the central nervous system. Journal of Biological, 7, 12.

    Article  Google Scholar 

  • Hanisch, U. K., & Kettenmann, H. (2007). Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nature Neuroscience, 10, 1387–1394.

    Article  CAS  PubMed  Google Scholar 

  • Helal, G. K., Aleisa, A. M., Helal, O. K., Al Rejaie, S. S., Al Yahya, A. A., Al Majed, A. A., et al. (2009). Metallothionein induction reduces caspase-3 activity and TNFalpha levels with preservation of cognitive function and intact hippocampal neurons in carmustine-treated rats. Oxidative Medicine and Cellular Longevity, 2, 26–35.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hyrien, O., Dietrich, J., & Noble, M. (2010). Mathematical and experimental approaches to identify and predict the effects of chemotherapy on neuroglial precursors. Cancer Research, 70, 10051–10059.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Janelsins, M. C., Roscoe, J. A., Berg, M. J., Thompson, B. D., Gallagher, M. J., Morrow, G. R., et al. (2010). IGF-1 partially restores chemotherapy-induced reductions in neural cell proliferation in adult C57BL/6 mice. Cancer Investigation, 28, 544–553.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Joshi, G., Sultana, R., Tangpong, J., Cole, M. P., St Clair, D. K., Vore, M., et al. (2005). Free radical mediated oxidative stress and toxic side effects in brain induced by the anti cancer drug adriamycin: insight into chemobrain. Free Radical Research, 39, 1147–1154.

    Article  CAS  PubMed  Google Scholar 

  • Joshi, G., Hardas, S., Sultana, R., St Clair, D. K., Vore, M., & Butterfield, D. A. (2007). Glutathione elevation by gamma-glutamyl cysteine ethyl ester as a potential therapeutic strategy for preventing oxidative stress in brain mediated by in vivo administration of adriamycin: Implication for chemobrain. Journal of Neuroscience Research, 85, 497–503.

    Article  CAS  PubMed  Google Scholar 

  • Joshi, G., Aluise, C. D., Cole, M. P., Sultana, R., Pierce, W. M., Vore, M., et al. (2010). Alterations in brain antioxidant enzymes and redox proteomic identification of oxidized brain proteins induced by the anti-cancer drug adriamycin: implications for oxidative stress-mediated chemobrain. Neuroscience, 166, 796–807.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaya, E., Keskin, L., Aydogdu, I., Kuku, I., Bayraktar, N., & Erkut, M. A. (2005). Oxidant/antioxidant parameters and their relationship with chemotherapy in Hodgkin’s lymphoma. Journal of International Medical Research, 33, 687–692.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy, D. D., Ladas, E. J., Rheingold, S. R., Blumberg, J., & Kelly, K. M. (2005). Antioxidant status decreases in children with acute lymphoblastic leukemia during the first six months of chemotherapy treatment. Pediatric Blood & Cancer, 44, 378–385.

    Article  Google Scholar 

  • Konat, G. W., Kraszpulski, M., James, I., Zhang, H. T., & Abraham, J. (2008). Cognitive dysfunction induced by chronic administration of common cancer chemotherapeutics in rats. Metabolic Brain Disease, 23, 325–333.

    Article  CAS  PubMed  Google Scholar 

  • Koppelmans, V., Breteler, M. M., Boogerd, W., Seynaeve, C., Gundy, C., & Schagen, S. B. (2012). Neuropsychological performance in survivors of breast cancer more than 20 years after adjuvant chemotherapy. Journal of Clinical Oncology, 30, 1080–1086.

    Article  PubMed  Google Scholar 

  • Koros, C., & Kitraki, E. (2009). Neurofilament isoform alterations in the rat cerebellum following cytosine arabinoside administration. Toxicology Letters, 189, 215–218.

    Article  CAS  PubMed  Google Scholar 

  • Koros, C., Papalexi, E., Anastasopoulos, D., Kittas, C., & Kitraki, E. (2007). Effects of AraC treatment on motor coordination and cerebellar cytoarchitecture in the adult rat. A possible protective role of NAC. Neurotoxicology, 28, 83–92.

    Article  CAS  PubMed  Google Scholar 

  • Lau, B. W., Yau, S. Y., Lee, T. M., Ching, Y. P., Tang, S. W., & So, K. F. (2009). Intracerebroventricular infusion of cytosine-arabinoside causes prepulse inhibition disruption. Neuroreport, 20, 371–377.

    Article  CAS  PubMed  Google Scholar 

  • Li, C. Q., Liu, D., Huang, L., Wang, H., Zhang, J. Y., & Luo, X. G. (2008). Cytosine arabinoside treatment impairs the remote spatial memory function and induces dendritic retraction in the anterior cingulate cortex of rats. Brain Research Bulletin, 77, 237–240.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Vijayanathan, V., Gulinello, M., & Cole, P. D. (2010a). Intrathecal methotrexate induces focal cognitive deficits and increases cerebrospinal fluid homocysteine. Pharmacology Biochemistry and Behavior, 95, 428–433.

    Article  CAS  Google Scholar 

  • Li, Y., Vijayanathan, V., Gulinello, M. E., & Cole, P. D. (2010b). Systemic methotrexate induces spatial memory deficits and depletes cerebrospinal fluid folate in rats. Pharmacology Biochemistry and Behavior, 94, 454–463.

    Article  CAS  Google Scholar 

  • Licht, T., Goshen, I., Avital, A., Kreisel, T., Zubedat, S., Eavri, R., et al. (2011). Reversible modulations of neuronal plasticity by VEGF. Proceedings of the National Academy of Sciences of the United States of America, 108, 5081–5086.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liedke, P. E., Reolon, G. K., Kilpp, B., Brunetto, A. L., Roesler, R., & Schwartsmann, G. (2009). Systemic administration of doxorubicin impairs aversively motivated memory in rats. Pharmacology Biochemistry and Behavior, 94, 239–243.

    Article  CAS  Google Scholar 

  • Long, J. M., Lee, G. D., Kelley-Bell, B., Spangler, E. L., Perez, E. J., Longo, D. L., et al. (2011). Preserved learning and memory following 5-fluorouracil and cyclophosphamide treatment in rats. Pharmacology Biochemistry and Behavior, 100, 205–211.

    Article  CAS  Google Scholar 

  • Lyons, L., ElBeltagy, M., Bennett, G., & Wigmore, P. (2011a). The effects of cyclophosphamide on hippocampal cell proliferation and spatial working memory in rat. PLoS One, 6, e21445.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lyons, L., ElBeltagy, M., Umka, J., Markwick, R., Startin, C., Bennett, G., et al. (2011b). Fluoxetine reverses the memory impairment and reduction in proliferation and survival of hippocampal cells caused by methotrexate chemotherapy. Psychopharmacology (Berl), 215, 105–115.

    Article  CAS  Google Scholar 

  • Lyons, L., ElBeltagy, M., Bennett, G., & Wigmore, P. (2012). Fluoxetine counteracts the cognitive and cellular effects of 5-Fluorouracil in the rat hippocampus by a mechanism of prevention rather than recovery. PLoS One, 7, e30010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Madhyastha, S., Somayaji, S. N., Rao, M. S., Nalini, K., & Bairy, K. L. (2002). Hippocampal brain amines in methotrexate-induced learning and memory deficit. Canadian Journal of Physiology and Pharmacology, 80, 1076–1084.

    Article  CAS  PubMed  Google Scholar 

  • Manda, K., & Bhatia, A. L. (2003). Prophylactic action of melatonin against cyclophosphamide-induced oxidative stress in mice. Cell Biology and Toxicology, 19, 367–372.

    Article  CAS  PubMed  Google Scholar 

  • Mignone, R. G., & Weber, E. T. (2006). Potent inhibition of cell proliferation in the hippocampal dentate gyrus of mice by the chemotherapeutic drug thioTEPA. Brain Research, 1111, 26–29.

    Article  CAS  PubMed  Google Scholar 

  • Mondie, C. M., Vandergrift, K. A., Wilson, C. L., Gulinello, M. E., & Weber, E. T. (2010). The chemotherapy agent, thioTEPA, yields long-term impairment of hippocampal cell proliferation and memory deficits but not depression-related behaviors in mice. Behavioural Brain Research, 209, 66–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Monje, M., & Dietrich, J. (2012). Cognitive side effects of cancer therapy demonstrate a functional role for adult neurogenesis. Behavioural Brain Research, 227, 376–379.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mustafa, S., Walker, A., Bennett, G., & Wigmore, P. M. (2008). 5-Fluorouracil chemotherapy affects spatial working memory and newborn neurons in the adult rat hippocampus. European Journal of Neuroscience, 28, 323–330.

    Article  PubMed  Google Scholar 

  • Nokia, M. S., Sisti, H. M., Choksi, M. R., & Shors, T. J. (2012). Learning to learn: theta oscillations predict new learning, which enhances related learning and neurogenesis. PLoS One, 7, e31375.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oboh, G., & Ogunruku, O. O. (2010). Cyclophosphamide-induced oxidative stress in brain: protective effect of hot short pepper (Capsicum frutescens L. var. abbreviatum). Experimental and Toxicologic Pathology, 62, 227–233.

    Article  CAS  PubMed  Google Scholar 

  • Oboh, G., Akomolafe, T. L., Adefegha, S. A., & Adetuyi, A. O. (2011). Inhibition of cyclophosphamide-induced oxidative stress in rat brain by polar and non-polar extracts of Annatto (Bixa orellana) seeds. Experimental and Toxicologic Pathology, 63, 257–262.

    Article  CAS  PubMed  Google Scholar 

  • Öz, E., & Ilhan, M. N. (2006). Effects of melatonin in reducing the toxic effects of doxorubicin. Molecular and Cellular Biochemistry, 286, 11–15.

    Article  PubMed  Google Scholar 

  • Palmer, T. D., Willhoite, A. R., & Gage, F. H. (2000). Vascular niche for adult hippocampal neurogenesis. Journal of Comparative Neurology, 425, 479–494.

    Article  CAS  PubMed  Google Scholar 

  • Papageorgiou, M., Stiakaki, E., Dimitriou, H., Malliaraki, N., Notas, G., Castanas, E., et al. (2005). Cancer chemotherapy reduces plasma total antioxidant capacity in children with malignancies. Leukemia Research, 29, 11–16.

    Article  CAS  PubMed  Google Scholar 

  • Rajamani, R., Muthuvel, A., Senthilvelan, M., & Sheeladevi, R. (2006). Oxidative stress induced by methotrexate alone and in the presence of methanol in discrete regions of the rodent brain, retina and optic nerve. Toxicology Letters, 165, 265–273.

    Article  CAS  PubMed  Google Scholar 

  • Ransohoff, R. M., & Perry, V. H. (2009). Microglial physiology: unique stimuli, specialized responses. Annual Review of Immunology, 27, 119–145.

    Article  CAS  PubMed  Google Scholar 

  • Rzeski, W., Pruskil, S., Macke, A., Felderhoff-Mueser, U., Reiher, A. K., Hoerster, F., et al. (2004). Anticancer agents are potent neurotoxins in vitro and in vivo. Annals of Neurology, 56, 351–360.

    Article  CAS  PubMed  Google Scholar 

  • Sebolt-Leopold, J. S., & English, J. M. (2006). Mechanisms of drug inhibition of signalling molecules. Nature, 441, 457–462.

    Article  CAS  PubMed  Google Scholar 

  • Seigers, R., & Fardell, J. E. (2011). Neurobiological basis of chemotherapy-induced cognitive impairment: a review of rodent research. Neuroscience & Biobehavioral Reviews, 35, 729–741.

    Article  Google Scholar 

  • Seigers, R., Schagen, S. B., Beerling, W., Boogerd, W., van Tellingen, O., van Dam, F. S., et al. (2008). Long-lasting suppression of hippocampal cell proliferation and impaired cognitive performance by methotrexate in the rat. Behavioural Brain Research, 186, 168–175.

    Article  CAS  PubMed  Google Scholar 

  • Seigers, R., Schagen, S. B., Coppens, C. M., van der Most, P. J., van Dam, F. S., Koolhaas, J. M., et al. (2009). Methotrexate decreases hippocampal cell proliferation and induces memory deficits in rats. Behavioural Brain Research, 2, 279–284.

    Article  Google Scholar 

  • Seigers, R., Pourtau, L., Schagen, S. B., van Dam, F. S., Koolhaas, J. M., Konsman, J. P., et al. (2010a). Inhibition of hippocampal cell proliferation by methotrexate in rats is not potentiated by the presence of a tumor. Brain Research Bulletin, 81, 472–476.

    Article  CAS  PubMed  Google Scholar 

  • Seigers, R., Timmermans, J., van der Horn, H. J., de Vries, E. F., Dierckx, R. A., Visser, L., et al. (2010b). Methotrexate reduces hippocampal blood vessel density and activates microglia in rats but does not elevate central cytokine release. Behavioural Brain Research, 207, 265–272.

    Article  CAS  PubMed  Google Scholar 

  • Silverman, D. H., Dy, C. J., Castellon, S. A., Lai, J., Pio, B. S., Abraham, L., et al. (2006). Altered frontocortical, cerebellar, and basal ganglia activity in adjuvant-treated breast cancer survivors 5–10 years after chemotherapy. Breast Cancer Research and Treatment, 103, 303–311.

    Article  PubMed  Google Scholar 

  • Silverstein, F. S., & Johnston, M. V. (1986). A model of methotrexate encephalopathy: neurotransmitter and pathologic abnormalities. Journal of Child Neurology, 1, 351–357.

    Article  CAS  PubMed  Google Scholar 

  • Smith, J., Ladi, E., Mayer-Proschel, M., & Noble, M. (2000). Redox state is a central modulator of the balance between self-renewal and differentiation in a dividing glial precursor cell. Proceedings of the National Academy of Sciences of the United States of America, 97, 10032–10037.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tangpong, J., Cole, M. P., Sultana, R., Joshi, G., Estus, S., Vore, M., et al. (2006). Adriamycin-induced, TNF-alpha-mediated central nervous system toxicity. Neurobiology of Disease, 23, 127–139.

    Article  CAS  PubMed  Google Scholar 

  • Tangpong, J., Cole, M. P., Sultana, R., Estus, S., Vore, M., St, C. W., et al. (2007). Adriamycin-mediated nitration of manganese superoxide dismutase in the central nervous system: insight into the mechanism of chemobrain. Journal of Neurochemistry, 100, 191–201.

    Article  CAS  PubMed  Google Scholar 

  • Tangpong, J., Miriyala, S., Noel, T., Sinthupibulyakit, C., Jungsuwadee, P., & St Clair, D. K. (2011). Doxorubicin-induced central nervous system toxicity and protection by xanthone derivative of Garcinia mangostana. Neuroscience, 175, 292–299.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vijayanathan, V., Gulinello, M., Ali, N., & Cole, P. D. (2011). Persistent cognitive deficits, induced by intrathecal methotrexate, are associated with elevated CSF concentrations of excitotoxic glutamate analogs and can be reversed by an NMDA antagonist. Behavioural Brain Research, 225, 491–497.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Ren, K., Perez, J., Silva, A. J., & de Pena, O. S. (2003). The antimetabolite ara-CTP blocks long-term memory of conditioned taste aversion. Learning & Memory, 10, 503–509.

    Article  Google Scholar 

  • Wefel, J. S., & Schagen, S. B. (2012). Chemotherapy-related cognitive dysfunction. Current Neurology and Neuroscience Reports, 12, 267–275.

    Article  CAS  PubMed  Google Scholar 

  • Wefel, J. S., Kayl, A. E., & Meyers, C. A. (2004). Neuropsychological dysfunction associated with cancer and cancer therapies: a conceptual review of an emerging target. British Journal of Cancer, 90, 1691–1696.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wefel, J. S., Saleeba, A. K., Buzdar, A. U., & Meyers, C. A. (2010). Acute and late onset cognitive dysfunction associated with chemotherapy in women with breast cancer. Cancer, 116, 3348–3356.

    Article  PubMed  Google Scholar 

  • Weijl, N. I., Hopman, G. D., Wipkink-Bakker, A., Lentjes, E. G., Berger, H. M., Cleton, F. J., et al. (1998). Cisplatin combination chemotherapy induces a fall in plasma antioxidants of cancer patients. Annals of Oncology, 9, 1331–1337.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, C. L., & Weber, E. T. (2013). Chemotherapy drug thioTEPA exacerbates stress-induced anhedonia and corticosteroid responses but not impairment of hippocampal cell proliferation in adult mice. Behavioural Brain Research, 236, 180–185.

    Article  CAS  PubMed  Google Scholar 

  • Winocur, G., Binns, M. A., & Tannock, I. (2011). Donepezil reduces cognitive impairment associated with anti-cancer drugs in a mouse model. Neuropharmacology, 61, 1222–1228.

    Article  CAS  PubMed  Google Scholar 

  • Winocur, G., Henkelman, M., Wojtowicz, J. M., Zhang, H., Binns, M. A., & Tannock, I. F. (2012). The effects of chemotherapy on cognitive function in a mouse model: a prospective study. Clinical Cancer Research, 18, 3112–3121.

    Article  CAS  PubMed  Google Scholar 

  • Yang, M., Kim, J. S., Song, M. S., Kim, S. H., Kang, S. S., Bae, C. S., et al. (2010). Cyclophosphamide impairs hippocampus-dependent learning and memory in adult mice: Possible involvement of hippocampal neurogenesis in chemotherapy-induced memory deficits. Neurobiology of Learning and Memory, 93, 487–494.

    Article  CAS  PubMed  Google Scholar 

  • Yang, M., Kim, J. S., Kim, J., Kim, S. H., Kim, J. C., Kim, J., et al. (2011). Neurotoxicity of methotrexate to hippocampal cells in vivo and in vitro. Biochemical Pharmacology, 82, 72–80.

    Article  CAS  PubMed  Google Scholar 

  • Yang, M., Kim, J. S., Kim, J., Jang, S., Kim, S. H., Kim, J. C., et al. (2012). Acute treatment with methotrexate induces hippocampal dysfunction in a mouse model of breast cancer. Brain Research Bulletin, 89, 50–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Seigers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seigers, R., Schagen, S.B., Van Tellingen, O. et al. Chemotherapy-related cognitive dysfunction: current animal studies and future directions. Brain Imaging and Behavior 7, 453–459 (2013). https://doi.org/10.1007/s11682-013-9250-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-013-9250-3

Keywords

Navigation