Skip to main content

Mitigating Concept Drift via Rejection

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Abstract

Learning in non-stationary environments is challenging, because under such conditions the common assumption of independent and identically distributed data does not hold; when concept drift is present it necessitates continuous system updates. In recent years, several powerful approaches have been proposed. However, these models typically classify any input, regardless of their confidence in the classification – a strategy, which is not optimal, particularly in safety-critical environments where alternatives to a (possibly unclear) decision exist, such as additional tests or a short delay of the decision. Formally speaking, this alternative corresponds to classification with rejection, a strategy which seems particularly promising in the context of concept drift, i.e. the occurrence of situations where the current model is wrong due to a concept change. In this contribution, we propose to extend learning under concept drift with rejection. Specifically, we extend two recent learning architectures for drift, the self-adjusting memory architecture (SAM-kNN) and adaptive random forests (ARF), to incorporate a reject option, resulting in highly competitive state-of-the-art technologies. We evaluate their performance in learning scenarios with different types of drift.

This work was supported by Honda Research Institute Europe GmbH, Offenbach am Main, Germany.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We subsitute a small \(\epsilon > 0\) for \(d(x, x_i)\) if \(d(x, x_i) < \epsilon \).

  2. 2.

    The fixed window serves as a straight-forward example. Results for the adaptive window, SAM, and ARF are comparable – the largest difference in accuracy between all four is below 2%.

References

  1. Cha, E., Dragan, A.D., Srinivasa, S.S.: Perceived robot capability. In: 24th IEEE International Symposium on Robot and Human Interactive Communication, RO-MAN 2015, Kobe, Japan, August 31–September 4 2015, pp. 541–548 (2015)

    Google Scholar 

  2. Desai, M., et al.: Impact of robot failures and feedback on real-time trust. In: HRI. IEEE/ACM, pp. 251–258 (2013)

    Google Scholar 

  3. Kwon, M., Huang, S.H., Dragan, A.D.: Expressing robot incapability. In: Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, HRI 2018, Chicago, IL, USA, 05–08 March 2018, pp. 87–95 (2018)

    Google Scholar 

  4. Chow, C.: On optimum recognition error and reject tradeoff. IEEE Trans. Inf. Theor. 16(1), 41–46 (2006). ISSN 0018–9448

    Article  MathSciNet  Google Scholar 

  5. Herbei, R., Wegkamp, M.H.: Classification with reject option. Can. J. Stat. 34(4), 709–721 (2006)

    Article  MathSciNet  Google Scholar 

  6. Bartlett, P.L., Wegkamp, M.H.: Classification with a reject option using a hinge loss. J. Mach. Learn. Res. 9, 1823–1840 (2008). ISSN 1532–4435

    MathSciNet  MATH  Google Scholar 

  7. Villmann, T., et al.: Self-adjusting reject options in prototype based classification. In: Merényi, E., Mendenhall, M.J., O’Driscoll, P. (eds.) Advances in Self-organizing Maps and Learning Vector Quantization. AISC, vol. 428, pp. 269–279. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28518-4_24

    Chapter  Google Scholar 

  8. Fischer, L., Hammer, B., Wersing, H.: Optimal local rejection for classifiers. Neurocomputing 214, 445–457 (2016)

    Article  Google Scholar 

  9. Vovk, V., Gammerman, A., Shafer, G.: Algorithmic Learning in a Random World. Springer, New York (2005). https://doi.org/10.1007/b106715. ISBN 0387001522

    Book  MATH  Google Scholar 

  10. Ditzler, G.: Learning in nonstationary environments: a survey. IEEE Comput. Intell. Mag. 10(4), 12–25 (2015). ISSN 1556–603X

    Article  MathSciNet  Google Scholar 

  11. Gomes, H.M.: A survey on ensemble learning for data stream classification. ACM Comput. Surv. 50(2), 23:1–23:36 (2017)

    Article  Google Scholar 

  12. Losing, V., Hammer, B., Wersing, H.: Tackling heterogeneous concept drift with the Self-Adjusting Memory (SAM). Knowl. Inf. Syst. 54(1), 171–201 (2018)

    Article  Google Scholar 

  13. Loeffel, P.-X., Bifet, A., Marsala, C., Detyniecki, M.: Droplet ensemble learning on drifting data streams. In: Adams, N., Tucker, A., Weston, D. (eds.) IDA 2017. LNCS, vol. 10584, pp. 210–222. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68765-0_18

    Chapter  Google Scholar 

  14. Gomes, H.M., et al.: Adaptive random forests for evolving data stream classification. Mach. Learn. 106, 1469–1495 (2017)

    Article  MathSciNet  Google Scholar 

  15. Loeffel, P.X., Marsala, C., Detyniecki, M.: Classification with a reject option under concept drift: the droplets algorithm. In: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–9, October 2015

    Google Scholar 

  16. Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Advances in Large Margin Classifiers, pp. 61–74. MIT Press (1999)

    Google Scholar 

  17. Hellman, M.E.: The nearest neighbor classification rule with a reject option. IEEE Trans. Syst. Sci. Cybern. 6(3), 179–185 (1970). ISSN 0536–1567

    Article  Google Scholar 

  18. Denoeux, T.: A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans. Syst. Man Cybern. 25(5), 804–813 (1995)

    Article  Google Scholar 

  19. Delany, S.J., Cunningham, P., Doyle, D., Zamolotskikh, A.: Generating estimates of classification confidence for a case-based spam filter. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 177–190. Springer, Heidelberg (2005). https://doi.org/10.1007/11536406_16

    Chapter  Google Scholar 

  20. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). ISSN 0885–6125

    Article  Google Scholar 

  21. Fernández-Delgado, M.: Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15, 3133–3181 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Niculescu-Mizil, A., Caruana, R.: Predicting good probabilities with supervised learning. In: Proceedings of the 22nd International Conference on Machine Learning, ICML 2005, pp. 625–632. ACM, Bonn (2005). ISBN 1-59593-180-5

    Google Scholar 

  23. Nadeem, M.S.A., Zucker., Hanczar, B.: Accuracy-rejection curves (ARCs) for comparing classification methods with a reject option. In: Džeroski, S., Guerts, P., Rousu, J. (eds.) Proceedings of the Third International Workshop on Machine Learning in Systems Biology, Proceedings of Machine Learning Research, vol. 8, pp. 65–81. PMLR, Ljubljana (May 2009)

    Google Scholar 

  24. Bifet, A.: MOA: massive online analysis. J. Mach. Learn. Res. 11, 1601–1604 (2010). ISSN 1532–4435

    Google Scholar 

  25. Timothy, L.H., Watkin, A.R., Biehl, M.: The statistical mechanics of learning a rule. Rev. Mod. Phys. 65, 499–556 (1993)

    Article  MathSciNet  Google Scholar 

  26. Losing, V., Hammer, B., Wersing, H.: KNN classifier with self adjusting memory for heterogeneous concept drift. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 291–300. IEEE, Barcelona (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Philip Göpfert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Göpfert, J.P., Hammer, B., Wersing, H. (2018). Mitigating Concept Drift via Rejection. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11139. Springer, Cham. https://doi.org/10.1007/978-3-030-01418-6_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01418-6_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01417-9

  • Online ISBN: 978-3-030-01418-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics