Skip to main content

Droplet Ensemble Learning on Drifting Data Streams

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XVI (IDA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10584))

Included in the following conference series:

Abstract

Ensemble learning methods for evolving data streams are extremely powerful learning methods since they combine the predictions of a set of classifiers, to improve the performance of the best single classifier inside the ensemble. In this paper we introduce the Droplet Ensemble Algorithm (DEA), a new method for learning on data streams subject to concept drifts which combines ensemble and instance based learning. Contrarily to state of the art ensemble methods which select the base learners according to their performances on recent observations, DEA dynamically selects the subset of base learners which is the best suited for the region of the feature space where the latest observation was received. Experiments on 25 datasets (most of which being commonly used as benchmark in the literature) reproducing different type of drifts show that this new method achieves excellent results on accuracy and ranking against SAM KNN [1], all of its base learners and a majority vote algorithm using the same base learners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is simply done by computing the average \(\mu ^{i}\) as well as the standard deviation \(\sigma ^{i}\) of each feature on the initialization set and by transforming the \(i^{th}\) feature of \(x_{t}\) into \(\frac{x_{t}^{i}-\mu ^{i}}{\sigma {}^{i}}\).

  2. 2.

    http://moa.cms.waikato.ac.nz/.

  3. 3.

    https://github.com/vlosing/driftDatasets.

  4. 4.

    https://mab.to/o5iNvZdhH.

References

  1. Losing, V., Hammer, B., Wersing, H.: KNN classifier with self adjusting memory for heterogeneous concept drift. In: ICDM (2016)

    Google Scholar 

  2. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the KDD CUP 99 data set. In: Proceedings of the Second IEEE International Conference on Computational Intelligence in Security and Defense Applications, pp. 53–58 (2009)

    Google Scholar 

  3. Katakis, I., Tsoumakas, G., Vlahavas, I.: Tracking recurring contexts using ensemble classifiers: an application to email filtering. Knowl. Inf. Syst. 22(3), 371–391 (2010)

    Article  Google Scholar 

  4. Brzezinski, D., Stefanowski, J.: Reacting to different types of concept drift: the accuracy updated ensemble algorithm. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 81–94 (2014)

    Article  Google Scholar 

  5. Elwell, R., Polikar, R.: Incremental learning of concept drift in nonstationary environments. IEEE Trans. Neural Netw. 22(10), 1517–1531 (2011)

    Article  Google Scholar 

  6. Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: a new ensemble method for tracking concept drift. In: Third IEEE International Conference on Data Mining, ICDM 2003, pp. 123–130 (2013)

    Google Scholar 

  7. Bifet, A., Holmes, G., Pfahringer, B.: Leveraging bagging for evolving data streams. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS, vol. 6321, pp. 135–150. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15880-3_15

    Chapter  Google Scholar 

  8. Katakis, I., Tsoumakas, G., Vlahavas, I.: An ensemble of classifiers for coping with recurring contexts in data streams. In: 18th European Conference on Artificial Intelligence, Patras, Greece. IOS Press (2008)

    Google Scholar 

  9. Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., Gavaldà, R.: New ensemble methods for evolving data streams. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD 2009 (2009)

    Google Scholar 

  10. Oza, N., Russell, S.: Online bagging and boosting. In: Artificial Intelligence and Statistics 2001, pp. 105–112. Morgan Kaufmann (2001)

    Google Scholar 

  11. Jaber, G., Cornuéjols, A., Tarroux, P.: A new on-line learning method for coping with recurring concepts: the ADACC system. In: Lee, M., Hirose, A., Hou, Z.-G., Kil, R.M. (eds.) ICONIP 2013. LNCS, vol. 8227, pp. 595–604. Springer, Heidelberg (2013). doi:10.1007/978-3-642-42042-9_74

    Chapter  Google Scholar 

  12. Bifet, A., Gavaldà, R.: Adaptive learning from evolving data streams. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 249–260. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03915-7_22

    Chapter  Google Scholar 

  13. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth (1984)

    Google Scholar 

  14. Agrawal, R., Imielinski, T., Swami, A.: Database mining: a performance perspective. IEEE Trans. Knowl. Data Eng. 5(6), 914–925 (1993)

    Article  Google Scholar 

  15. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Knowledge Discovery and Data Mining, pp. 71–80 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Xavier Loeffel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Loeffel, PX., Bifet, A., Marsala, C., Detyniecki, M. (2017). Droplet Ensemble Learning on Drifting Data Streams. In: Adams, N., Tucker, A., Weston, D. (eds) Advances in Intelligent Data Analysis XVI. IDA 2017. Lecture Notes in Computer Science(), vol 10584. Springer, Cham. https://doi.org/10.1007/978-3-319-68765-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68765-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68764-3

  • Online ISBN: 978-3-319-68765-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics