Skip to main content

The Inverse Problem of Electrocardiography

  • Reference work entry
Comprehensive Electrocardiology

1 9.1 Introduction

In very broad terms, the inverse problem of electrocardiography may be defined as the determination of the electrical function of the heart from a number of remote recordings of potentials on some noninvasive or minimally invasive surface. In this sense, even clinical electrocardiographic or vectorcardiographic diagnosis is an inverse problem solved on an empirical basis by using previously cataloged information. In this chapter, the phrase “inverse problem of electrocardiography” is used in its more formal sense to mean the deduction of electrical information about the heart by mathematical manipulation of the measured potentials on the body surface (or from inside the cavities of the heart). The description of this inverse problem and various forms of its solution forms the principal subject matter of this chapter. We consider the clinical interpretation of the calculated electrical information only briefly, since clinical deduction may be viewed as subsequent to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yamashita Y., Theoretical studies on the inverse problem in electrocardiography and the uniqueness of the solution. IEEE Trans. Biomed. Eng., November 1982;29(11): 719–725.

    Article  PubMed  CAS  Google Scholar 

  2. Messnarz B., M. Seger, R. Modre, G. Fischer, F. Hanser, and B. Tilg, A comparison of noninvasive reconstruction of epicardial versus transmembrane potentials in consideration of the null space. IEEE Trans Biomed. Eng., Sept. 2004;51(9): 1609–1618.

    Article  PubMed  Google Scholar 

  3. Titomir L.I., The remote past and near future of electrocardiology – view point of a biomedical engineer. Bratisl Lek Listy, 2000;101(5): 272–279.

    PubMed  CAS  Google Scholar 

  4. Keener and Sneyd, Mathematical Physiology, volume 8 of Interdisciplinary Applied Mathematics, 1st ed. Springer, Berlin, 1998.

    Google Scholar 

  5. Schmidt J., C. Johnson, and R. MacLeod, An interactive computer model for defibrillation device design, in Building Bridges: International Congress on Electrocardiology International Meeting, T. Oostendorp and G. Oiju, Editors, 1995, pp. 160–161.

    Google Scholar 

  6. Hadamard J., Lectures on Cauchy’s Problems in Linear Partial Differential Equations. Yale University Press, New Haven, CT, 1923.

    Google Scholar 

  7. Babaeizadeh S., D.H. Brooks, D. Isaacson, and J. Newell, Electrode boundary conditions and experimental validation for BEM-based EIT forward and inverse solutions. IEEE Trans. Med. Imag., September 2006;25(9): 1180–1188.

    Article  Google Scholar 

  8. Babaeizadeh S., D.H. Brooks, and D. Isaacson, 3-D Electrical Impedance Tomography for piecewise constant domains with known internal boundaries. IEEE Trans. Biomed. Eng., January 2007;54(1): 2–10.

    Article  PubMed  Google Scholar 

  9. Hansen P., Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. SIAM, Philadelphia, 1998.

    Book  Google Scholar 

  10. Kaipio J. and E. Somersalo, Statistical and Computational Inverse Problems. Applied Mathematical Sciences, vol. 160. Springer, Berlin, 2005.

    Google Scholar 

  11. Tikhonov A. and V. Arsenin, Solution of Ill-posed Problems. Winston, Washington, DC, 1977.

    Google Scholar 

  12. Hansen P., Rank-Deficient and Discrete Ill-Posed Problems: Numerical aspects of linear inversion. PhD thesis, Technical University of Denmark, 1996.

    Google Scholar 

  13. Berger J., Statistical Decision Theory and Bayesian Analysis. Springer, Berlin, 1988.

    Google Scholar 

  14. Greensite F., Cardiac electromagnetic imaging as an inverse problem. Electromagnetics, September 2001;21(7–8): 559–577.

    Article  Google Scholar 

  15. Pullan A.J., Paterson, and Greensite, Noninvasive imaging of cardiac electrophysiology. Phil. Trans. R. Soc. Lond. A, June 2001;359(1783): 1277–1286.

    Article  Google Scholar 

  16. Greensite F., Well-posed formulation of the inverse problem of electrodiography. Ann. Biomed. Eng., 1994;22: 172–183.

    Article  PubMed  CAS  Google Scholar 

  17. Oster H., B. Taccardi, R. Lux, P. Ershler, and Y. Rudy, Noninvasive electrocardiographic imaging: Reconstruction of epicardial potentials, electrograms, and isochrones and localization of single and multiple electrocardiac events. Circulation, 1997;96: 1012–1024.

    Article  PubMed  CAS  Google Scholar 

  18. Li G. and B. He, Localization of sites of origins of cardiac activation by means of a new heart-model-based electrocardiographic imaging approach. IEEE Trans. Biomed. Eng., June 2001;48(6): 660–669.

    Article  CAS  Google Scholar 

  19. Gulrajani R.M., F.A. Roberge, and G.E. Mailloux, The forward problem of electrocardiography/The inverse problem of electrocardiography, in Comprehensive Electrocardiography, P. Macfarlane and T.V. Lawrie, Editors. Pergamon Press, New York, 1989, pp. 197–288.

    Google Scholar 

  20. da Silva F.L., Functional localization of brain sources using EEG and/or MEG data: Volume conductor and source models. Magn. Reson. Imaging, December 2004;22(10): 1533–1538.

    Article  Google Scholar 

  21. Yamashita Y., Theoretical studies on the inverse problem in electrocardiography and the uniqueness of the solution. IEEE Trans, Biomed. Eng., 1982;29: 719–725.

    Article  CAS  Google Scholar 

  22. Martin R.O. and T.C. Pilkington, Unconstrained inverse electrocardiography: Epicardial potentials. IEEE Trans. Biomed. Eng., July 1972;19(4): 276–285.

    Article  PubMed  CAS  Google Scholar 

  23. Damen A.A. and J. van der Kam, The use of the Singular Value Decomposition in electrocardiographs. Med. Biol. Eng. Comput., July 1982;20(4): 473–482.

    Article  PubMed  CAS  Google Scholar 

  24. Okamoto Y., Y. Teramachi, and T. Musha, Limitation of the inverse problem in body surface potential mapping. IEEE Trans. Biomed. Eng., November 1983;30(11): 749–754.

    Article  PubMed  CAS  Google Scholar 

  25. Rudy Y. and B. Messinger-Rapport, The inverse solution in electrocardiography: Solutions in terms of epicardial potentials. Crit. Rev. Biomed. Eng., 1988;16: 215–268.

    PubMed  CAS  Google Scholar 

  26. Hansen P.C., Rank-Defficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. Society for Industrial and Applied Mathematics, Philadelphia, 1998.

    Book  Google Scholar 

  27. Messinger-Rapport B.J. and Y. Rudy, Regularization of the inverse problem of electrocardiology: A model study. Math. Biosci., 1988;89: 79–118.

    Article  Google Scholar 

  28. MacLeod R., Percutaneous Transluminal Coronary Angioplasty as a Model of Cardiac Ischemia: Clinical and Modelling Studies. PhD thesis, Dalhousie University, Halifax, N.S., Canada, 1990.

    Google Scholar 

  29. MacLeod R., R. Miller, M. Gardner, and B. Horacek, Application of an electrocardiographic inverse solution to localize myocardial ischemia during percutaneous transluminal coronary angioplasty. J. Cardiovasc. Electrophysiol., 1995;6: 2–18.

    Article  PubMed  CAS  Google Scholar 

  30. Golub G. and C.V. Loan, Matrix Computations. Johns Hopkins, Baltimore, 1989.

    Google Scholar 

  31. Press W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical recipies in FORTRAN, the art of scientific computing, 2nd ed. Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  32. Hansen P.C., Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review, December 1992;34(4): 561–580.

    Article  Google Scholar 

  33. Brooks D., G. Ahmad, and R. MacLeod, Multiply constrained inverse electrocardiology: Combining temporal, multiple spatial, and iterative regularization, in Proceedings of the IEEE Engineering in Medicine and Biology Society 16th Annual International Conference. IEEE Computer Society, 1994, pp. 137–138.

    Google Scholar 

  34. Ramanathan C., P. Jia, R. Ghanem, D. Calvetti, and Y. Rudy, Noninvasive electrocardiographic imaging (ECGI): application of the generalized minimal residual (GMRes) method. Ann. Biomed. Eng., September 2003;31(8): 981–994.

    Article  PubMed  Google Scholar 

  35. Barr R. and M. Spach, A comparison of measured epicardial potentials with epicardial potentials computed from body surface measurements in the intact dog. Adv. Cardiol., 1978;21: 19–22.

    PubMed  CAS  Google Scholar 

  36. van Oosterom A., Incorporation of the spatial covariance in the inverse problem. Biomed. Technik, 1997;42(Suppl): 43–52.

    Google Scholar 

  37. van Oosterom A., The use of spatial covariance in computing pericardial potentials. IEEE Trans Biomed. Eng., 1999;46(7): 778–787.

    Article  PubMed  CAS  Google Scholar 

  38. van Oosterom A., The spatial covariance used in computing the pericardial potential distribution, in Computational Inverse Problems in Electrocardiography, P.R. Johnston, Editor. WIT Press, Southampton, UK, 2001, pp. 1–50.

    Google Scholar 

  39. Yılmaz B., R. MacLeod, B. Punske, B. Taccardi, and D. Brooks, Training set selection for statistical estimation of epicardial activation mapping from intravenous multielectrode catheters. IEEE Trans Biomed. Eng., November 2005;52(11): 1823–1831.

    Article  PubMed  Google Scholar 

  40. Serinagaoglu Y., R. MacLeod, and D. Brooks, A Bayesian approach to inclusion and performance analysis of using extra information in bioelectric inverse problems, in International Conference on Image Processing. IEEE Press, New York, 2003.

    Google Scholar 

  41. Serinagaoglu Y., D. Brooks, and R. MacLeod, Bayesian solutions and performance analysis in bioelectric inverse problems. IEEE Trans. Biomed. Eng., 2005;52(6): 1009–1020.

    Article  PubMed  Google Scholar 

  42. Serinagaoglu Y., D.H. Brooks, and R.S. MacLeod, Improved performance of Bayesian solutions for inverse electrocardiography using multiple information sources. IEEE Trans. Biomed. Eng., October 2006;53(10): 2024–2034.

    Article  PubMed  Google Scholar 

  43. Shahidi A., P. Savard, and R. Nadeau, Forward and inverse problems of electrocardiography: Modeling and recovery of epicardial potentials in humans. IEEE Trans Biomed. Eng., 1994;41(3): 249–256.

    Article  PubMed  CAS  Google Scholar 

  44. Brooks D., G. Ahmad, R. MacLeod, and G. Maratos, Inverse electrocardiography by simultaneous imposition of multiple constraints. IEEE Trans. Biomed. Eng., 1999;46(1): 3–18.

    Article  PubMed  CAS  Google Scholar 

  45. Ahmad G., D.H. Brooks, and R. MacLeod, An admissible solution approach to inverse electrocardiography. Ann. Biomed. Eng., 1998;26: 278–292.

    Article  PubMed  CAS  Google Scholar 

  46. Kay S.M., Fundamentals Of Statistical Signal Processing: Estimation Theory. Prentice-Hall, Englewood Cliffs, NJ, 1993.

    Google Scholar 

  47. Barr R. and T. Pilkington, Computing inverse solutions for an on-off heart model. IEEE Trans Biomed. Eng., 1969;16: 205–214.

    PubMed  CAS  Google Scholar 

  48. Brooks D., C.L. Nikias, and J. Siegel, An inverse solution in electrocardiography in the frequency domain, in Proceedings of the IEEE Engineering in Medicine and Biology Society 10th Annual International Conference, 1988, pp. 970–971.

    Chapter  Google Scholar 

  49. Oster H. and Y. Rudy, The use of temporal information in the regularization of the inverse problem of electrocardiography. IEEE Trans. Biomed. Eng., 1992;39(1): 65–75.

    Article  PubMed  CAS  Google Scholar 

  50. Joly D., Y. Goussard, and P. Savard, Time-recursive solution to the inverse problem of electrocardiography: A model-based approach. In Proc. 15th Annual IEEE-EMBS Conf., 1993, pp. 767–768.

    Google Scholar 

  51. El-Jakl J., F. Champagnat, and Y. Goussard, Time-space regularization of the inverse problem of electrocardiography. In Proc. 17th Annual IEEE-EMBS Conf., 1995, pp. 213–214.

    Google Scholar 

  52. Greensite F., A new treatment of the inverse problem of multivariate analysis. Inverse Problems, 2002;18: 363–379.

    Article  Google Scholar 

  53. Greensite F., The temporal prior in bioelectromagnetic source imaging problems. IEEE Trans. Biomed. Eng., 2003;50: 1152–1159.

    Article  PubMed  Google Scholar 

  54. Messnarz B., B. Tilg, R. Modre, G. Fischer, and F. Hanser, A new spatiotemporal regularization approach for reconstruction of cardiac transmembrane potential patterns. IEEE Trans. Biomed. Eng., Feb. 2004;51(2): 273–281.

    Article  Google Scholar 

  55. Skipa O., M. Nalbach, F. Sachse, C. Werner, and O. Dossel, Transmembrane potential reconstruction in anisotropic heart model. Intl. J. Bioelectromagnet., 2002;4(2): 17–18.

    Google Scholar 

  56. Cheng L.K., G.B. Sands, R.A. French, S.J. Withy, S.P. Wong, M.E. Legget, W.M. Smith, and A.J. Pullan, Rapid construction of a patient specific torso model from 3D ultrasound for noninvasive imaging of cardiac electrophysiology. Med. Biol. Eng. Comput., 2005;43(3): 325–330.

    Article  PubMed  CAS  Google Scholar 

  57. Zhang Y., A. Ghodrati, and D.H. Brooks, An analytical comparison of three spatio-temporal regularization methods for dynamic linear inverse problems in a common statistical framework. Inverse Problems, 2005;21: 357–382.

    Article  Google Scholar 

  58. Anderson B. and J. Moore, Optimal Filtering. Prentice-Hall, Englewood Cliffs, NJ, 1979.

    Google Scholar 

  59. Kailath T., A.H. Sayed, and B. Hassibi, Linear Estimation. Prentice-Hall, Englewood Cliffs, NJ, 2000.

    Google Scholar 

  60. Greensite F., Second-order approximation of the pseudoinverse for operator deconvolutions and families of ill-posed problems. SIAM J. Appl. Math., 1998;59(1): 1–16.

    Article  Google Scholar 

  61. Lux R., K. Evans, M. Burgess, R. Wyatt, and J. Abildskov, Redundancy reduction for improved display and analysis of body surface potential maps: I. Spatial compression. Circ. Res., 1981;49: 186–196.

    Article  PubMed  CAS  Google Scholar 

  62. Evans K., R. Lux, M. Burgess, R. Wyatt, and J. Abildskov, Redundancy reduction for improved display and analysis of body surface potential maps: II. Temporal compression. Circ. Res., 1981;49: 197–203.

    Article  PubMed  CAS  Google Scholar 

  63. Huiskamp G. and F. Greensite, A new method for myocardial activation imaging. IEEE Trans. Biomed. Eng., 1997;44: 433–446.

    Article  PubMed  CAS  Google Scholar 

  64. Hansen P., Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev., 1992;34(4): 561–580.

    Article  Google Scholar 

  65. Akaike H., A new look at the statistical model identification. IEEE Trans. Automat. Contr., December 1974;19(6): 716–723.

    Article  Google Scholar 

  66. Cheng L.K., J.M. Bodley, and A.J. Pullan, Comparison of potential and activation based formulations for the inverse problem of electrocardiology. IEEE Trans. Biomed. Eng., January 2003;50(1): 11–22.

    Article  PubMed  Google Scholar 

  67. Ghodrati A., D. Brooks, G. Tadmor, and R. MacLeod, Wavefront-based models for inverse electrocardiography, September 2006; 53(9): 1821–1831.

    Google Scholar 

  68. Andersen E. and K. Andersen, High Performance Optimization, chapter The MOSEK interior point optimizer for linear programming: an implementation of the homogeneous algorithm. Kluwer, Dordrecht, the Netherlands, 2000.

    Google Scholar 

  69. He B., G. Li, and X. Zhang, Noninvasive imaging of cardiac transmembrane potentials within three-dimensional myocardium by means of a realistic geometry anisotropic heart model. IEEE Trans. Biomed. Eng., October 2003;50(10): 1190–1202.

    Article  PubMed  Google Scholar 

  70. Liu C., G. Li, and B. He, Localization of the site of origin of reentrant arrhythmia from body surface potential maps: a model study. Phys. Med. Biol., 2005;50(7): 1421–1432.

    Article  PubMed  Google Scholar 

  71. Skipa O., Linear inverse problem of electrocardiography: Epicardial potentials and Transmembrane voltages. PhD thesis, University Karlsruhe, 2004.

    Google Scholar 

  72. Taccardi B., E. Macchi, R. Lux, P. Ershler, S. Spaggiari, S. Baruffi, and Y. Vyhmeister, Effect of myocardial fiber direction on epicardial potentials. Circ., 1994;90: 3076–3090.

    Article  CAS  Google Scholar 

  73. Cuppen J. and A. van Oosterom, Model studies with the inversely calculated isochrones of ventricular depolarization. IEEE Trans. Biomed. Eng., 1984;31: 652–659.

    Article  PubMed  CAS  Google Scholar 

  74. Cuppen J., Calculating the isochrones of ventricular depolarization. SIAM J. Sci. Statist. Comp., 1984;5: 105–120.

    Article  Google Scholar 

  75. Huiskamp G. and A. van Oosterom, The depolarization sequence of the human heart surface computed from measured body surface potentials. IEEE Trans. Biomed. Eng., 1989;35: 1047–1059.

    Article  Google Scholar 

  76. Huiskamp G. and A. van Oosterom, Tailored versus standard geometry in the inverse problem of electrocardiography. IEEE Trans. Biomed. Eng., 1989;36: 827–835.

    Article  PubMed  CAS  Google Scholar 

  77. Schmidt R.O., Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propagat., March 1986;34(3): 276–280.

    Article  Google Scholar 

  78. Mosher J.C., P.S. Lewis, and R.M. Leahy, Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans. Biomed. Eng., 1992;39(6): 541–557.

    Article  PubMed  CAS  Google Scholar 

  79. Tomlinson K.A., Finite Element Solution of an Eikonal Equation For Excitation Wavefront Propagation in Ventricular Myocardium. PhD thesis, The University of Auckland, New Zealand, 2000.

    Google Scholar 

  80. Pullan A.J., M.L. Buist, and L.K. Cheng, Mathematically Modelling the Electrical Activity of the Heart: From Cell to Body Surface and Back Again. World Scientific Publishing Company, Singapore, 2005.

    Book  Google Scholar 

  81. Greensite F., Remote reconstruction of confined wavefront propagation. Inverse Problems, 1995;11: 361–370.

    Article  Google Scholar 

  82. Huiskamp G. and A. van Oosterom, The depolarization sequence of the human heart surface computed from measured body surface potentials. IEEE Trans. Biomed. Eng., December 1988;35(12): 1047–1059.

    Article  PubMed  CAS  Google Scholar 

  83. Stoica P. and R. Moses, Spectral Analysis of Signals. Prentice-Hall, Englewood Cliffs, NJ, 2005.

    Google Scholar 

  84. Tilg B., G. Fischer, R. Modre, F. Hanser, B. Messnarz, M. Schocke, C. Kremser, T. Berger, F. Hintringer, and F.X. Roithinger, Model-based imaging of cardiac electrical excitation in humans. IEEE Trans. Med. Imag., September 2002;21(9): 1031–1039.

    Article  Google Scholar 

  85. Modre R., B. Tilg, G. Fischer, and P. Wach, Noninvasive myocardial activation time imaging: a novel inverse algorithm applied to clinical ECG mapping data. IEEE Trans. Biomed. Eng., October 2002;49(10): 1153–1161.

    Article  PubMed  Google Scholar 

  86. Tautenhahn U., On a general regularization scheme for nonlinear illposed problems: Ii. regularization in hilbert scales. Inverse Problems, 1998;14: 1607–1616.

    Article  Google Scholar 

  87. van Oosterom A. and P. van Dam, The intra-myocardial distance function used in inverse computations of the timing of depolarization and repolarization, in Computers in Cardiology ’05, vol. 32, Murray A, Editor. IEEE Computer Society Press, Piscataway, 2005, pp. 567–570.

    Chapter  Google Scholar 

  88. Berrier K.L., D.C. Sorensen, and D.S. Khoury, Solving the inverse problem of electrocardiography using a Duncan and Horn formulation of the Kalman filter. IEEE Trans. Biomed. Eng., 2004;51(3): 507–515.

    Article  PubMed  Google Scholar 

  89. Rao L., C. Ding, and D.S., Nonfluoroscopic localization of intracardiac electrode-catheters combined with noncontact electrical-anatomical imaging. Ann. Biomed. Eng., 2004;32: 1654–1661.

    Article  PubMed  Google Scholar 

  90. Voth E., The inverse problem of electrocardiography: industrial solutions and simulations. Int. J. Bioelectromag., 2005;7(2): 191–194.

    Google Scholar 

  91. Khoury D., Importance of geometry in reconstructing endocardial electrograms from noncontact multielectrode cavitary probe data, in Proceedings of the IEEE Engineering in Medicine and Biology Society 19th Annual International Conference, vol. 1, 1997, pp. 188–190.

    Google Scholar 

  92. Khoury D., Use of current density in the regularization of the inverse problem of electrocardiography, in Proceedings of the IEEE Engineering in Medicine and Biology Society 16th Annual International Conference. IEEE Press, New York, 1994, pp. 133–134.

    Chapter  Google Scholar 

  93. Velipasaoglu E., H. Sun, F. Zhang, K. Berrier, and D. Khoury, Spatial regularization of the electrocardiographic inverse problem and its application to endocardial mapping. IEEE Trans. Biomed. Eng., March 2000;47(3): 327–337.

    Article  PubMed  CAS  Google Scholar 

  94. Hansen P.C. and D.P. O’Leary, The use of the L-curve in the regularisation of discrete ill-posed problems. SIAM J. Sci. Comput., November 1993;14(6): 1487–1503.

    Article  Google Scholar 

  95. Colli Franzone P., L. Guerri, B. Taccardi, and C. Viganotti, Finite element approximation of regularised solutions of the inverse potential problem of electrocardiography and applications to experimental data. Calcolo, 1985;22(1): 91–186.

    Article  Google Scholar 

  96. Johnston P.R. and R.M. Gulrajani, A new method for regularization parameter determination in the inverse problem of electrocardiography. IEEE Trans. Biomed. Eng., January 1997;44(1): 19–39.

    Article  PubMed  CAS  Google Scholar 

  97. Golub G.H., M.T. Heath, and G. Wahba, Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics, 1979;21: 215–223.

    Article  Google Scholar 

  98. Lian J., D. Yao, and B. He, A new method for implementation of regularization in cortical potential imaging, in Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 20, Hong Kong, China, 1998. IEEE Computer Society Press, 1988, pp. 2155–2158.

    Google Scholar 

  99. Johnston P.R. and R.M. Gulrajani, Selecting the corner of the L-curve approach to Tikhonov regularisation. IEEE Trans. Biomed. Eng., September 2000;47(2): 1293–1296.

    Article  PubMed  CAS  Google Scholar 

  100. Bayley R. and P. Berry, The electrical field produced by the eccentric current dipole in the nonhomogeneous conductor. Am. Heart J., 1962;63: 808–820.

    Article  PubMed  CAS  Google Scholar 

  101. Bayley R. and P. Berry, The arbitrary electromotive double layer in the eccentric “heart” of the nonhomogeneous circular lamina. IEEE Trans. Biomed. Eng., 1964;11(4): 137–147.

    Article  PubMed  CAS  Google Scholar 

  102. Bayley R., J. Kalbfleisch, and P. Berry, Changes in the body’s QRS surface potentials produced by alterations in certain compartments of the nonhomogeneous conducting model. Am. Heart J., 1969;77(4): 517–528.

    Article  PubMed  CAS  Google Scholar 

  103. Rudy Y. and R. Plonsey, The eccentric spheres model as the basis for a study of the role of geometry and inhomogeneities in electrocardiography. IEEE Trans. Biomed. Eng., 1979;26: 392–399.

    Article  PubMed  CAS  Google Scholar 

  104. Rudy Y. and R. Plonsey, The effects of variations in conductivity and geometrical parameters on the electrocardiogram, using an eccentric spheres model. Circ. Res., 1979;44(1): 104–111.

    Article  PubMed  CAS  Google Scholar 

  105. Rudy Y. and R. Plonsey, A comparison of volume conductor and source geometry effects on body surface and epicardial potentials. Circ. Res., 1980;46: 283–291.

    Article  PubMed  CAS  Google Scholar 

  106. Throne R. and L. Olson, The effect of errors in assumed conductivities and geometry on numerical solutions to the inverse problem of electrocardiography. IEEE Trans. Biomed. Eng., 1995;42: 1192–1200.

    Article  PubMed  CAS  Google Scholar 

  107. Oster H., B. Taccardi, R. Lux, P. Ershler, and Y. Rudy, Noninvasive electrocardiographic imaging: Reconstruction of epicardial potentials, electrograms, and isochrones and localization of single and multiple electrocardiac events. Circ., 1997;96(3): 1012–1024.

    Article  CAS  Google Scholar 

  108. He S., Frequency series expansion of an explicit solution for a dipole inside a conducting sphere at low frequencies. IEEE Trans. Biomed. Eng., 1998;45(10): 1249–1258.

    Article  PubMed  CAS  Google Scholar 

  109. Brooks D. and R. MacLeod, Electrical imaging of the heart: Electrophysical underpinnings and signal processing opportunities. IEEE Sign. Proc. Mag., 1997;14(1): 24–42.

    Article  Google Scholar 

  110. Hren R., A Realistic Model of the Human Ventricular Myocardium: Application to the Study of Ectopic Activation. PhD thesis, Dalhousie University, Halifax, Nova Scotia, 1996.

    Google Scholar 

  111. Hren R., X. Zhang, and G. Stroink, Comparison between electrocardiographic and magnetocardiographic inverse solutions using the boundary element method. Med. & Biol. Eng. & Comp., 1996;34(2): 110.

    Article  CAS  Google Scholar 

  112. Hren R., R. MacLeod, G. Stroink, and B. Horacek, Assessment of spatial resolution of body surface potentials maps in localizing ventricular tachycardia foci. Biomed. Technik, 1997;42(Suppl): 41–44.

    Google Scholar 

  113. Moe G., W. Rheinboldt, and J. Abildskov, A computer model of fibrillation. Am. Heart J., 1964;67: 200–220.

    Article  PubMed  CAS  Google Scholar 

  114. Okajima M., T. Fujinaa, T. Kobayashi, and K. Yamada, Computer simulation of the propagation process in excitation of the ventricles. Circ. Res., 1968;23: 203–211.

    Article  PubMed  CAS  Google Scholar 

  115. Abildskov J., Mechanism of the vulnerable period in a model of cardiac fibrillation. J. Cardiovasc. Electrophysiol., 1990;1: 303–308.

    Article  Google Scholar 

  116. Gharpure P. and C. Johnson, A 3-dimensional cellular automation model of the heart, in Proceedings of the IEEE Engineering in Medicine and Biology Society 15th Annual International Conference. IEEE Press, New York, 1993, pp. 752–753.

    Chapter  Google Scholar 

  117. Hren R., J. Nenonen, and B. Horacek, Simulated epicardial potential maps during paced activation reflect myocardial fibrous structure. Ann. Biomed. Eng., 1998;26(6): 1022.

    Article  PubMed  CAS  Google Scholar 

  118. Hren R. and B. Punske, A comparison of simulated QRS isointegral maps resulting from pacing at adjacent sites: Implications for the spatial resolution of pace mapping using body surface potentials. J. Electrocardiol., 1998;31(Suppl): 135.

    Article  PubMed  Google Scholar 

  119. Hren R., B. Punske, and G. Stroink, Assessment of spatial resolution of cardiac pace mapping when using body surface potentials. Med. & Biol. Eng. & Comp., 1999;37(4): 477.

    Article  CAS  Google Scholar 

  120. Modre R., A Regularization Technique for Nonlinear Ill-Posed Problems Applied to Myocardial Activation Time Imaging. PhD thesis, Department of Biophysics, Institute of Biomedical Engineering, Technical University Graz, Austria, February 2000.

    Google Scholar 

  121. Ramanathan C. and Y. Rudy, Electrocardiographic imaging: II. Effects of torso inhomogeneities on noninvasive reconstruction of epicardial potentials, electrograms, and isochrones. J. Cardiovasc. Electrophysiol., February 2001;12(2): 241–252.

    Article  PubMed  CAS  Google Scholar 

  122. Cheng L.K., J.M. Bodley, and A.J. Pullan, Effects of experimental and modeling errors on electrocardiographic inverse problems. IEEE Trans. Biomed. Eng., January 2003;50(1): 23–32.

    Article  PubMed  Google Scholar 

  123. Pullan A.J., L.K. Cheng, M.P. Nash, C.P. Bradley, and D.J. Paterson, Noninvasive electrical imaging of the heart: Theory and model development. Ann. Biomed. Eng., October 2001;29(10): 817–836.

    Article  PubMed  CAS  Google Scholar 

  124. Burger H. and J. van Milaan, Heart-vector and leads. Part II. Br. Heart J., 1947;9: 154–160.

    Article  PubMed  CAS  Google Scholar 

  125. Burger H. and J. van Milaan, Heart-vector and leads. Part III: Geometrical representation. Br. Heart J., 1948;10: 229–233.

    Article  PubMed  CAS  Google Scholar 

  126. MacLeod R. and D. Brooks, Validation approaches for electrocardiographic inverse problems, in Computational Inverse Problems in Electrocardiography, P. Johnston, Editor. WIT Press, Ashurst, UK, 2001, pp. 229–268.

    Google Scholar 

  127. Nash M.P. and A.J. Pullan, Challenges facing validation of noninvasive electrical imaging of the heart. Ann. Noninvasive Electrocardiol., January 2005;10(1): 73–82.

    Article  PubMed  Google Scholar 

  128. Spach M.S., R.C. Barr, C.F. Lanning, and P.C. Tucek, Origin of body surface QTS and the T wave potentials from epicardial potential distributions in the intact chimpanzee. Circulation, February 1977;55(2): 268–288.

    Article  PubMed  CAS  Google Scholar 

  129. Barr R.C. and M.S. Spach, Inverse calculation of QRS-T epicardial potentials from body surface potential distributions for normal and ectopic beats in the intact dog. Circ. Res., 1978;42: 661–675.

    Article  PubMed  CAS  Google Scholar 

  130. Nash M.P., C.P. Bradley, and D.J. Paterson, Imaging electrocardiographic dispersion of depolarization and repolarization during ischemia: Simultaneous body surface and epicardial mapping. Circulation, April 2003;107(17): 2257–2263.

    Article  PubMed  Google Scholar 

  131. Zhang X., I. Ramachandra, Z. Liu, B. Muneer, S.M. Pogwizd, and B. He, Noninvasive three-dimensional electrocardiographic imaging of ventricular activation sequence. Am. J. Physiol. Heart Circ. Phyiol., 2005;289(6): H2724–H2732.

    Article  CAS  Google Scholar 

  132. Nash M.P., C.P. Bradley, A. Kardos, A.J. Pullan, and D.J. Paterson, An experimental model to correlate simultaneous body surface and epicardial electropotential recordings in-vivo. Chaos, Solitons & Fractals, 2002;13(8): 1735–1742.

    Article  Google Scholar 

  133. Nash M.P., C.P. Bradley, L.K. Cheng, A.J. Pullan, and D.J. Paterson, Electrocardiographic inverse validation study: in-vivo mapping and analysis. FASEB J., April 2000;14(4): A442.

    Google Scholar 

  134. Taccardi B. and G. Marchetti, Distribution of heart potentials on the body surface and in artificial conducting media, in International symposium on the electrophysiology of the heart, B. Taccardi and G. Marchetti, Editors. Pergamon Press, New York, 1965, pp. 257–280.

    Google Scholar 

  135. Taccardi B., Changes in cardiac electrogenesis following coronary occlusion, in Coronary Circulation and Energetics of the Myocardium. S. Karger, Basel/New York, 1966, pp. 259–267.

    Google Scholar 

  136. Franzone P.C., L. Guerri, B. Taccardi, and C. Viganotti, The direct and inverse problems in electrocardiology. Numerical aspects of some regularization methods and applications to data collected in isolated dog heart experiments. Lab. Anal. Numerica C.N.R., 1979, Pub. N:222.

    Google Scholar 

  137. Franzone P.C., G. Gassaniga, L. Guerri, B. Taccardi, and C. Viganotti, Accuracy evaluation in direct and inverse electrocardiology, in Progress in Electrocardiography, P. Macfarlane, Editor. Pitman Medical, London, 1979, pp. 83–87.

    Google Scholar 

  138. Messinger-Rapport B. and Y. Rudy, The inverse problem in electrocardiography: A model study of the effects of geometry and conductivity parameters on the reconstruction of epicardial potentials. IEEE Trans. Biomed. Eng., 1986;33: 667–676.

    Article  PubMed  CAS  Google Scholar 

  139. Rudy Y. and H. Oster, The electrocardiographic inverse problem. Crit. Rev. Biomed. Eng., 1992;20: 22–45.

    Google Scholar 

  140. Throne R., L. Olson, T. Hrabik, and J. Windle, Generalized eigensystem techniques for the inverse problem of electrocardiography applied to a realistic heart-torso geometry. IEEE Trans. Biomed. Eng., 1997;44(6): 447.

    Article  PubMed  CAS  Google Scholar 

  141. Brooks D. and R. MacLeod, Imaging the electrical activity of the heart: Direct and inverse approaches, in IEEE International Conference on Image Processing. IEEE Computer Society, 1994, pp. 548–552.

    Google Scholar 

  142. MacLeod R., B. Yilmaz, B. Taccardi, B. Punske, Y. Serinagaoglu, and D. Brooks, Direct and inverse methods for cardiac mapping using multielectrode catheter measurements. Biomed. Technik, 2001;46(Suppl): 207–209.

    Article  Google Scholar 

  143. Ni Q., R. MacLeod, R. Lux, and B. Taccardi, Interpolation of cardiac electric potentials. Ann. Biomed. Eng., 1997;25(Suppl): 61. Biomed. Eng. Soc. Annual Fall Meeting.

    Google Scholar 

  144. Burnes J., D. Kaelber, B. Taccardi, R. Lux, P. Ershler, and Y. Rudy, A field-compatible method for interpolating biopotentials. Ann. Biomed. Eng., 1998;26(1): 37–47.

    Article  PubMed  CAS  Google Scholar 

  145. Yilmaz B., R. MacLeod, S. Shome, B. Punkse, and B. Taccardi, Minimally invasive epicardial activation mapping from multielectrode catheters, in Proceedings of the IEEE Engineering in Medicine and Biology Society 23rd Annual International Conference. IEEE EMBS, IEEE Press, New York, 2001.

    Google Scholar 

  146. MacLeod R., B. Taccardi, and R. Lux, Mapping of cardiac ischemia in a realistic torso tank preparation, in Building Bridges: International Congress on Electrocardioloegy International Meeting, 1995, pp. 76–77.

    Google Scholar 

  147. MacLeod R., S. Shome, J. Stinstra, B. Punske, and B. Hopenfeld, Mechanisms of ischemia-induced ST-segment changes. J. Electrocardiol., 2005, vol 38, pp. 8–13.

    Article  PubMed  Google Scholar 

  148. MacLeod R., R. Lux, M. Fuller, and B. Taccardi, Evaluation of novel measurement methods for detecting heterogeneous repolarization. J. Electrocardiol., 1996;29(Suppl): 145–153.

    Article  PubMed  Google Scholar 

  149. Punske B., R. Lux, R. MacLeod, M. Fuller, P. Ershler, T. Dustman, Y. Vyhmeister, and B. Taccardi, Mechanisms of the spatial distribution of QT intervals on the epicardial and body surfaces. J. Cardiovasc. Electrophysiol., 1999;10(12): 1605–1618.

    Article  PubMed  CAS  Google Scholar 

  150. Durrer D., R. van Dam, G. Freud, M. Janse, F. Meijler, and R. Arzbaecher, Total excitation of the isolated human heart. Circ., 1970;41: 899–912.

    Article  CAS  Google Scholar 

  151. Johnston P.R. and D. Kilpatrick, The inverse problem of electrocardiology: The performance of inversion techniques as a function of patient anatomy. Math. Biosci., April 1995;126(2): 125–146.

    Article  PubMed  CAS  Google Scholar 

  152. Jenkins K., E. Walsh, S. Colan, D. Bergau, P. Saul, and J. Lock, Multipolar endocardial mapping of the right atrium during cardiac catheterization: Description of a new technique. J. Am. Coll. Cardiol., 1993;22: 1105–1110.

    Article  PubMed  CAS  Google Scholar 

  153. Fitzpatrick A., M. Chin, C. Stillson, and M. Lesh, Successful percutaneous deployment, pacing and recording from a 64-polar, multi-strut “basket” catheter in the swine left ventricle. PACE, 1994;17:482.

    Google Scholar 

  154. Smeets J., S.B. Haim, L. Rodriguez, C. Timmermans, and H. Wellens, New method for nonfluoroscopic endocardial mapping in humans. Circ., 1998;97: 2426–2432.

    Article  CAS  Google Scholar 

  155. Modre R., B. Tilg, G. Fischer, F. Hanser, B. Messnarz, M. Seger, M.F. Schocke, T. Berger, F. Hintringer, and F.X. Roithinger, Atrial noninvasive activation mapping of paced rhythm data. J. Cardiovasc. Electrophysiol., 2003;14(7): 712–719.

    Article  PubMed  Google Scholar 

  156. Fischer G., F. Hanser, C. Hintermuller, M. Seger, B. Pfeifer, R. Modre, L. Wieser, B. Tilg, S. Egger, T. Berger, F. Roithinger, and F. Hinteringer, A signal processing pipeline for noninvasive imaging of ventricular preexcitation. Meth. Inf. Med., 2005;44(4).

    Google Scholar 

  157. Ramanathan C., R. Ghanem, P. Jia, K. Ryu, and Y. Rudy, Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat Med, April 2004;10(4): 422–428.

    Article  PubMed  CAS  Google Scholar 

  158. Intini A., R.N. Goldstein, P. Jia, C. Ramanathan, K. Ryu, B. Giannattasio, R. Gilkeson, B.S. Stambler, P. Brugada, W.G. Stevenson, Y. Rudy, and A.L. Waldo, Electrocardiographic imaging (ECGI), a novel diagnostic modality used for mapping of focal left ventricular tachycardia in a young athlete. Hear. Res., 2005;2(11): 1250–1252.

    Google Scholar 

  159. Jia P., C. Ramanathan, R.N. Ghanem, K. Ryu, N. Varma, and Y. Rudy, Electrocardiographic imaging of cardiac resynchronization therapy in heart failure: Observation of variable electrophysiologic responses. Hear. Res., 2006;3(3): 296–310.

    Google Scholar 

  160. Velipasaoglu E., H. Sun, L. Rao, and D. Khoury, Role of geometry in the endocardial electrocardiographic inverse problem, in Proceedings of the IEEE Engineering in Medicine and Biology Society 22nd Annual International Conference, vol. 2, 2000, pp. 902–903.

    Google Scholar 

  161. Rao L., R. He, C. Ding, and D.S. Khoury, Novel noncontact catheter system for endocardial electrical and anatomical imaging. Ann. Biomed. Eng., 2004;32: 573–584.

    Article  PubMed  Google Scholar 

  162. Jia P., B. Punske, B. Taccardi, and Y. Rudy, Electrophysiologic endocardial mapping from a noncontact nonexpandable catheter: a validation study of a geometry-based concept. J Cardiovasc Electrophysiol, Nov 2000;11(11): 1238–1251.

    Article  PubMed  CAS  Google Scholar 

  163. Beatty G., S. Remole, M. Johnston, J. Holte, and D. Benditt, Non-contact electrical extrapolation technique to reconstruct endocardial potentials. PACE, 1994;17(4): 765.

    Article  Google Scholar 

  164. Gornick C., S. Adler, B. Pederson, J. Hauck, J. Budd, and J. Schweitzer, Validation of a new noncontact catheter system for electroanatomic mapping of left ventricular endocardium. Circ., Feb 1999;99(6): 829–835.

    Article  CAS  Google Scholar 

  165. Kadish A., J. Hauck, B. Pederson, G. Beatty, and C. Gornick, Mapping of atrial activation with a noncontact, multielectrode catheter in dogs. Circ., Apr 1999;99(14): 1906–1913.

    Article  CAS  Google Scholar 

  166. Peters N., W. Jackman, R. Schilling, and D. Divies, Human left ventricular endocardial activation mapping using a novel noncontact catheter. Circ., 1998;9: 887–898.

    Google Scholar 

  167. Paul T., B. Windhagen-Mahnert, T. Kriebel, H. Bertram, R. Kaulitz, T. Korte, M. Niehaus, and J. Tebbenjohanns, Atrial reentrant tachycardia after surgery for congenital heart disease: endocardial mapping and radiofrequency catheter ablation using a novel, noncontact mapping system. Circ., May 2001;103(18): 2266–2271.

    Article  CAS  Google Scholar 

  168. Yue A., J. Paisey, S. Robinson, T. Betts, P. Roberts, and J. Morgan, Determination of human ventricular repolarization by noncontact mapping: validation with monophasic action potential recordings. Circ., Sep 2004;110(11): 1343–1350.

    Article  Google Scholar 

  169. Thiagalingam A., E. Wallace, A. Boyd, V. Eipper, C. Campbell, K. Byth, D. Ross, and P. Kovoor, Noncontact mapping of the left ventricle: insights from validation with transmural contact mapping. Pacing Clin. Electrophysiol., May 2004;27(5): 570–578.

    Article  PubMed  Google Scholar 

  170. Ambroggi L.D., B. Taccardi, and E. Macchi, Body surface maps of heart potential: Tentative localization of preexcited area of forty-two Wolff–Parkinson–White patients. Circ., 1976;54: 251.

    Article  Google Scholar 

  171. Essen R.V., R. Hinsen, R. Louis, W. Merx, J. Silny, G. Rau, and S. Effert, On-line monitoring of multiple precordial leads in high risk patients with coronary artery disease – a pilot study. Eur. Heart J., 1985;5: 203–209.

    Google Scholar 

  172. Green L., R. Lux, and C. Haws, Detection and localization of coronary artery disease with body surface mapping in patients with normal electrocardiograms. Circ., 1987;76: 1290–1297.

    Article  CAS  Google Scholar 

  173. Ambroggi L.D., T. Bertoni, M. Breghi, M. Marconi, and M. Mosca, Diagnostic value of body surface potential mapping in old anterior non-Q myocardial infarction. J. Electrocardiol., 1988;21(4): 321–329.

    Article  PubMed  Google Scholar 

  174. Bell A., M. Loughhead, S. Walker, and D. Kilpatrick, Prognostic significance of ST potentials determined by body surface mapping in inferior wall acute myocardial infarction. Am. J. Cardiol., 1989;64: 319–323.

    Article  PubMed  CAS  Google Scholar 

  175. Anderson J., G. Dempsey, G. Wright, C. Cullen, M. Crawley, E. McAdams, J. McLaughlin, G. MacKenzie, and A. Adgey, Portable cardiac mapping assessment of acute ischaemic injury. Methods Inf. Med. (MVI), 1994;33(1): 72–75.

    CAS  Google Scholar 

  176. Khoury D., K. Berrier, S. Badruddin, and W. Zoghbi, Three-dimensional electrophysiological imaging of the intact canine left ventricle using a noncontact multielectrode cavitary probe: study of sinus, paced, and spontaneous premature beats. Circ., 1998;97(4): 399–409.

    Article  CAS  Google Scholar 

  177. Tilg B., P. Wach, A. Sippensgroenewegen, G. Fischer, R. Modre, F. Roithinger, M. Mlynash, G. Reddy, T. Roberts, M. Lesh, and P. Steiner, Closed chest validation of source imaging from human ECG and MCG mapping, in Proceedings of The First Joint BMES/EMBS Conference. IEEE Press, New York, 1999, p. 275.

    Google Scholar 

  178. Potse M., R. Hoekema, A.C. Linnenbank, A. Sippens- Groenewegen, J. Strackee, J.M.T. de Bakker, and C.A. Grimbergen, Conversion of left ventricular endocardial positions from patient-independent co-ordinates into biplane fluoroscopic projections. Med. Biol. Eng. Comput., January 2002;40(1): 41–46.

    Article  PubMed  CAS  Google Scholar 

  179. Tilg B., G. Fischer, R. Modre, F. FH, B. Messnarz, and F.X. Roithinger, Electrocardiographic imaging of atrial and ventricular electrical activation. Med. Image Anal., September 2003;7(3): 391–398.

    Article  PubMed  Google Scholar 

  180. Pfeifer B., F. Hanser, and C.H. Modre-Osprian, G. Fischer, M. Seger, H. Mühlthaler, T. TT, and B. Tilg, Cardiac modeling using active appearance models and morphological operators. medical imaging: Visualization, image-guided procedures, and display, in Proceedings of the SPIE, 2005.

    Google Scholar 

  181. Cheney M., D. Isaacson, and J. Newell, Electrical Impedance Tomography. SIAM Rev., 1999;41(1): 85–101.

    Article  Google Scholar 

  182. Saulnier G.J., R.S. Blue, J.C. Newell, D. Isaacson, and P.M. Edic, Electrical Impedance Tomography. IEEE Signal Process. Mag., 2001;18(6): 31–43.

    Article  Google Scholar 

  183. A. Ghodrati, D. Brooks, and R. MacLeod, Methods of solving reduced lead systems for inverse electrocardiography. IEEE Trans. Biomed. Eng., Feb 2007;54(2): 339–343.

    Article  PubMed  Google Scholar 

  184. Green L.S., B. Taccardi, P.R. Ershler, and R.L. Lux, Effects of conducting media on isopotential and isochrone distributions. Circulation, 1991;84(6): 2513–2521.

    Article  PubMed  CAS  Google Scholar 

  185. Bradley C.P., M.P. Nash, L.K. Cheng, A.J. Pullan, and D.J. Paterson, Electrocardiographic inverse validation study: Model development and methodology. FASEB J., April 2000;14(4): A442.

    Google Scholar 

  186. Messnarz B., M. Seger, R. Modre, G. Fischer, F. Hanser, and B. Tilg, A comparison of noninvasive reconstruction of epicardial versus transmembrane potentials in consideration of the null space. IEEE Trans. Biomed. Eng., September 2004;51(9): 1609–1618.

    Article  PubMed  Google Scholar 

  187. Oostendorp T., J. Nenonen, and P. Korhonen, Noninvasive determination of the activation sequence of the heart: application to patients with previous myocardial infarctions. J. Electrocardiol., 2002;35(Suppl): 75–80.

    Article  PubMed  Google Scholar 

  188. Fischer G., B. Pfeifer, M. Seger, C. Hintermuller, F. Hanser, R. Modre, B. Tilg, T. Trieb, C. Kremser, F. Roithinger, and F. Hintringer, Computationally efficient noninvasive cardiac activation time imaging. Methods Inf Med, 2005;44(5): 674–686.

    PubMed  CAS  Google Scholar 

  189. Nielsen P.M., I.J. LeGrice, B.H. Smaill, and P.J. Hunter, Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol., 1991;260(4 Pt 2): H1365–H1378.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Ltd.

About this entry

Cite this entry

Pullan, A.J., Cheng, L.K., Nash, M.P., Ghodrati, A., MacLeod, R., Brooks, D.H. (2010). The Inverse Problem of Electrocardiography. In: Macfarlane, P.W., van Oosterom, A., Pahlm, O., Kligfield, P., Janse, M., Camm, J. (eds) Comprehensive Electrocardiology. Springer, London. https://doi.org/10.1007/978-1-84882-046-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-046-3_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-045-6

  • Online ISBN: 978-1-84882-046-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics