Skip to main content
Log in

Conversion of left ventricular endocardial positions from patient-independent co-ordinates into biplane fluoroscopic projections

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Electrocardiographic body surface mapping is used clinically to guide catheter ablation of cardiac arrhythmias by providing an estimate of the site of origin of an arrhythmia. The localisation methods used in our group produce results in left-ventricular cylinder co-ordinates (LVCCs), which are patient-independent but hard to interpret during catheterisation in the electrophysiology laboratory. It is preferable to provide these results as three-dimensional (3D) co-ordinates which can be presented as projections in the biplane fluoroscopic views that are used routinely to monitor the catheter position. Investigations were carried out into how well LVCCs can be converted into fluoroscopic projections with the limited anatomical data available in contemporary clinical practice. Endocardial surfaces from magnetic resonance imaging (MRI) scans of 24 healthy volunteers were used to create an appropriate model of the left-ventricular endocardial wall. Methods for estimation of model parameters from biplane fluoroscopic images were evaluated using simulated biplane data created from these surfaces. In addition, the conversion method was evaluated, using 107 catheter positions obtained from eight patients, by computing LVCCs from biplane fluoroscopic images and reconstructing the 3D positions using the model. The median 3D distance between reconstructed positions and measured positions was 4.3 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Burbank, F., Parish, D., andWexler, L. (1988): ‘Echocardiographic-like angled views of the heart by MR imaging’,J. Comput. Assist. Tomogr.,12, pp. 181–195

    Google Scholar 

  • Calkins, H., Epstein, A., Packer, D., Arria, A. M., Hummel, J., Gilligan, D. M., Trusso, J., Carlson, M., Luceri, R., Kopelman, H., Wilber, D., Wharton, J. M., andStevenson, W. (2000): ‘Catheter ablation of ventricular tachycardia in patients with structural heart disease using cooled radiofrequency energy: Results of a prospective multicenter study’,J. Am. Coll. Cardiol.,35, pp. 1905–1914

    Article  Google Scholar 

  • Dodge, H. T., Sandler, H., Ballew, D., andLord, J. D. (1960): ‘The use of biplane angiocardiography for the measurement of left ventricular volume in man’,Am. Heart J.,60, pp. 762–776

    Google Scholar 

  • Dove, E. L., Philip, K., Gotteiner, N. L., Vonesh, M. J., Rumberger, J. A., Reed, J. E., Stanford, W., McPherson, D. D., andChandran, K. B. (1994): ‘A method for automatic edge detection and volume computation of the left ventricle from ultrafast computed tomographic images’,Investigat. Radiol.,29, pp. 945–954

    Google Scholar 

  • Dubuc, M., Nadeau, R., Tremblay, G., Kus, T., Molin, F., andSavard, P. (1993): ‘Pace mapping using body surface potential maps to guide catheter ablation of accessory pathways in patients with Wolff-Parkinson-White syndrome’,Circulation,87, pp. 135–143

    Google Scholar 

  • Frangi, A. F., Niessen, W. J., andViergever, M. A. (2001): ‘Three-dimensional modeling for functional analysis of cardiac images: A review’,IEEE Trans. Med. Imag.,20, pp. 2–25

    Google Scholar 

  • Gustavsson, T., Pascher, R., andCaidahl, K. (1993): ‘Model based dynamic 3D reconstruction and display of the left ventricle from 2D cross-sectional echocardiograms’,Comput. Med. Imag. Graph.,17, pp. 273–278

    Article  Google Scholar 

  • Hauer, R. N. W., Heethaar, R. M., de Zwart, M. T. W., van Dijk, R. N., van der Tweel, I., Borst, C., andBobles de Medina, E. O. (1986): ‘Endocardial catheter mapping: validation of a cineradiographic method for accurate localization of left ventricular sites’,Circulation,74, pp. 862–868

    Google Scholar 

  • Hoekema, R., Uijen, G. J. H., van Erning, L., andvan Oosterom, A. (1999): ‘Interindividual variability of multilead electrocardiographic recordings: Influence of heart position’,J. Electrocardiol.,32, pp. 137–148

    Google Scholar 

  • Leon, L. J., andHoráček, B. M. (1991): ‘Computer model of excitation and recovery in the anisotropic myocardium. II. Excitation in the simplified left ventricle’,J. Electrocardiol.,24, pp. 17–31

    Google Scholar 

  • Nadkarni, S. K., Boughner, D. R., Drangova, M., andFenster, A. (2000): ‘Three-dimensional echocardiography: Assessment of inter- and intra-operator variability and accuracy in the measurement of left ventricular cavity volume and myocardial mass’,Phys. Med. Biol.,45, pp. 1255–1273

    Article  Google Scholar 

  • Nakagawa, H., Yamanashi, W. S., Pitha, J. V., Arruda, M., Wang, X., Ohtomo, K., Beckman, K. J., McClelland, J. H., Lazzara, R., andJackman, W. M. (1995): ‘Comparison ofin vivo tissue temperature profile and lesion geometry for radiofrequency ablation with a saline-irrigated electrode versus temperature control in a canine thigh muscle preparation’,Circulation,91, pp. 2264–2273

    Google Scholar 

  • Nielsen, P. M. F., Le Grice, I. J., Smaill, B. H., andHunter, P. J. (1991): ‘Mathematical model of geometry and fibrous structure of the heart’,Am. J. Physiol.,260, pp. H1365-H1378

    Google Scholar 

  • Peeters, H. A. P., SippensGroenewegen, A., Wever, E. F. D., Ramanna, H., Linnenbank, A. C., Potse, M., Grimbergen, C. A., van Hemel, N. M., Hauer, R. N. W., andRobles de Medina, E. O. (1999): ‘Clinical application of an integrated 3-phase mapping technique for localization of the site of origin of idiopathic ventricular tachycardia’,Circulation,99, pp. 1300–1311

    Google Scholar 

  • Potse, M., Linnenbank, A. C., Peeters, H. A. P., SippensGroenewegen, A., andGrimbergen, C. A. (2000): ‘Continuous localization of cardiac activation sites using a database of multichannel ECG recordings’,IEEE Trans. Biomed. Eng.,47, pp. 682–689

    Article  Google Scholar 

  • Shpun, S., Gepstein, L., Hayam, G., andBen-Haim, S. A. (1997): ‘Guidance of radiofrequency endocardial ablation with real-time three-dimensional magnetic navigation system’,Circulation,96, pp. 2016–2021

    Google Scholar 

  • Simmers, T. A., Wittkampf, F. H. M., Hauer, R. N. W., andRobles de Medina, E. O. (1994): ‘In vivo ventricular lesion growth in radiofrequency catheter ablation’,PACE,17, pp. 523–531

    Google Scholar 

  • SippensGroenewegen, A., Spekhorst, H., van Hemel, N. M., Kingma, J. H., Hauer, R. N. W., Janse, M. J., andDunning, A. J. (1990): ‘Body surface mapping of ectopic left and right ventricular activation: QRS spectrum in patients without structural heart disease’,Circulation,82, pp. 879–896

    Google Scholar 

  • SippensGroenewegen, A., Spekhorst, H., van Hemel, N. M., Kingma, J. H., Hauer, R. N. W., Janse, M. J., andDunning, A. J. (1992): ‘Body surface mapping of ectopic left ventricular activation: QRS spectrum in patients with prior myocardial infarction’,Circ. Res.,71, pp. 1361–1378

    Google Scholar 

  • Wittkampf, F. H. M., Wever, E. F. D., Derksen, R., Wilde, A. A. M., Ramanna, H., Hauer, R. N. W., andRobles de Medina, E. O. (1999): ‘LocaLisa: New technique for real-time 3-dimensional localization of regular intracardiac electrodes’,Circulation,99, pp. 1312–1317

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Potse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potse, M., Hoekema, R., Linnenbank, A.C. et al. Conversion of left ventricular endocardial positions from patient-independent co-ordinates into biplane fluoroscopic projections. Med. Biol. Eng. Comput. 40, 41–46 (2002). https://doi.org/10.1007/BF02347694

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02347694

Keywords

Navigation