Skip to main content

Arterial Compliance

  • Chapter
Cardiovascular Medicine

Abstract

The constituents of the walls of blood vessels make them compliant. Their compliance is demonstrated by the relationship between transmural pressure and vessel diameter. Arteries, in contrast to veins, exhibit a steep pressure/volume relationship indicative of less compliant vessels. The compliance characteristics of these vessels relate to their initial shape and to the components of the wall, including vascular smooth muscle, collagen, elastin, and other interstitial elements. The nonlinear relationship between volume and pressure is indicative of the physical properties of the components and of the heterogeneous nature of the wall. This nonlinearity means that no single number can be utilized to define the compliance characteristics of any blood vessel or any vascular bed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pepine CJ, Nichols WW. Aortic impedance in cardiovascular disease. Prog Cardiovasc Dis 1982;24:307–318.

    Article  PubMed  CAS  Google Scholar 

  2. Guyton AL. Vascular distensibility and functions of the arterial and venous systems. In: Guyton AL, ed. Textbook of Medical Physiology, 8th ed. Philadelphia: WB Saunders, 1991:159–167.

    Google Scholar 

  3. Noble MIM. Left ventricular load, arterial impedance and their interrelationship. Cardiovasc Res 1979;13:183–198.

    Article  PubMed  CAS  Google Scholar 

  4. Piene H. Impedance matching between ventricle and load. Ann Biomed Eng 1984;12:191–207.

    Article  PubMed  CAS  Google Scholar 

  5. Nichols WW, Peping CJ, Geiser EA, Conti R. Vascular load defined by the aortic input impedance spectrum. Fed Proc 1980;39:196–201.

    PubMed  CAS  Google Scholar 

  6. O’Rourke MF, Avolio AP, Nichols WW. Left ventricular-systemic arterial coupling in humans and strategies to improve coupling in disease states. In: Yin FCP, ed. Ventricular/Vascular Coupling. New York: Springer-Verlag, 1987:3–19.

    Google Scholar 

  7. Arndt JO, Stegall HF, Wicke HJ. Mechanics of the aorta in vivo. Circ Res 1971;28:693–704.

    PubMed  CAS  Google Scholar 

  8. Simon AC, Safar ME, Levenson JA, et al. an evaluation of large arteries compliance in man. Am J Physiol 1979;237:H550–H554.

    PubMed  CAS  Google Scholar 

  9. Covell JW, Pouleur H, Ross J Jr. Left ventricular wall stress and aortic input impedance. Fed Proc 1980;39:202–207.

    PubMed  CAS  Google Scholar 

  10. Randall OS, Van den Bos GC, Westerhof N. Systemic compliance: does it play a role in the genesis of essential hypertension? Cardiovasc Res 1984;18:455–462.

    PubMed  CAS  Google Scholar 

  11. Westerhof N, Bosman R, Defries CJ, Noordergraaf A. Analog studies of the human systemic arterial tree. J Biomech 1969;2:121–143.

    Article  PubMed  CAS  Google Scholar 

  12. Latham RD, Westerhof N, Sipkema P, et al. Regional wave travel and reflections along the human aorta: a study with six simultaneous micromanometric pressures. Circulation 1985;72:1257–1269.

    PubMed  CAS  Google Scholar 

  13. Safar M. Therapeutic trials and large arteries in hypertension. Am Heart J 1988;115:702–710.

    Article  PubMed  CAS  Google Scholar 

  14. Christensen KL. Reducing pulse pressure in hypertension may normalize small artery structure. Hypertension 1991;18:722–727.

    PubMed  CAS  Google Scholar 

  15. O’Rourke MF, Yaginuma T, Avolio AP. Physiological and pathophysiological implications of ventricular:vascular coupling. Ann Biomed Eng 1984;12:119–134.

    Article  PubMed  CAS  Google Scholar 

  16. Milnor WR. Pulsatile blood flow. N Engl J Med 1972;287:27–34.

    Article  PubMed  CAS  Google Scholar 

  17. Lee RT, Kamm RD. Vascular mechanics for the cardiologist. J Am Coll Cardiol 1994;23:1289–1295.

    PubMed  CAS  Google Scholar 

  18. Safar ME, Frohlich ED. The arterial system in hypertension. A prospective view. Hypertension 1995;26:10–14.

    PubMed  CAS  Google Scholar 

  19. Dzau VJ, Gibbons GH, Cooke JP, et al. Vascular biology and medicine in the 1990s: scope, concepts, potentials and perspectives. Circulation 1993;87:705–719.

    PubMed  CAS  Google Scholar 

  20. Glasser SP, Arnett DK, McVeigh GE, et al. Vascular compliance and cardiovascular disease: a risk factor or a marker? Am J Hypertens 1997;10:1175–1189.

    Article  PubMed  CAS  Google Scholar 

  21. Caro CCT, Pedley TJ, Schroter RC, Seed WA. The Mechanics of the Circulation. Oxford: Oxford University Press, 1978:243–346.

    Google Scholar 

  22. Fischer GM, Llaurado JG. Collagen and elastin content in canine arteries selected from functionally different vascular beds. Circ Res 1966;19:394–399.

    PubMed  CAS  Google Scholar 

  23. Harkness MLR, Harkness RD, McDonald DA. The collagen and elastin content of the arterial wall in the dog. Proc R Soc Lond 1957;146B:541–551.

    CAS  Google Scholar 

  24. Nichols WW, McDonald DA. Wave-velocity in the proximal aorta. Med Biol Eng 1972;10:327–335.

    Article  PubMed  CAS  Google Scholar 

  25. Learoyd BM, Taylor MG. Alterations with age in the viscoelastic properties of human arterial walls. Circ Res 1966;18:278–292.

    PubMed  CAS  Google Scholar 

  26. McVeigh GE, Morgan DJ, Finkelstein SM, et al. Vascular abnormalities associated with long-term cigarette smoking identified by arterial waveform analysis. Am J Med 1997;102:227–231.

    Article  PubMed  CAS  Google Scholar 

  27. Heintz B, Dorr R, Gillessen T, et al. Do arterial endothelin 1 levels affect local arterial stiffness? Am Heart J 1993;26:987–989.

    Article  Google Scholar 

  28. Glasser SP, Selwyn A, Ganz P. Atherosclerosis, risk factors and the vascular endothelium. Am Heart J 1996;131:379–384.

    Article  PubMed  CAS  Google Scholar 

  29. Simon A, Megnien JL, Levenson J. Detection of preclinical atherosclerosis may optimize the management of hypertension. Am J Hypertens 1997;10:813–824.

    Article  PubMed  CAS  Google Scholar 

  30. Roach MR, Burton AC. The effect of age on the elasticity of human iliac arteries. Can J Biochem Physiol 1959;37:557–570.

    PubMed  CAS  Google Scholar 

  31. Bergel DH. The static elastic properties of the arterial wall. J Physiol (Lond) 1961;156:445–457.

    PubMed  CAS  Google Scholar 

  32. Sonnenblick EH. Series elastic and contractile elements in heart muscle: changes in muscle length. Am J Physiol 1964;207:1330–1338.

    PubMed  CAS  Google Scholar 

  33. Pringle JWS. Models of muscle. Symp Soc Exp Biol 1960;14:41–68.

    PubMed  CAS  Google Scholar 

  34. Cox RH. Passive mechanics and connective tissue composition of canine arteries. Am J Physiol 1978;234:H533–H541.

    PubMed  CAS  Google Scholar 

  35. Dobrin P, Canfield T. Identification of smooth muscle series elastic component in intact carotid artery. Am J Physiol 1977;232:H122–H130.

    PubMed  CAS  Google Scholar 

  36. Wiederhielm CA. Distensibility characteristics of small blood vessels. Fed Proc 1965;24:1075–1084.

    PubMed  CAS  Google Scholar 

  37. Gow BS. Circulatory correlates: vascular impedance, resistance and capacity. In: Shepherd JT, Abboud FM, eds. American Physiological Society Handbook of Physiology, Section 2. The Cardiovascular System, vol. 2. Bethesda, MD. American Physiological Society, 1983:353–408.

    Google Scholar 

  38. Cox RH. Mechanics of canine iliac artery smooth muscle in vitro. Am J Physiol 1976;230:462–470.

    PubMed  CAS  Google Scholar 

  39. Dobrin PB. Mechanical properties of arteries. Physiol Rev 1978;58:397–460.

    PubMed  CAS  Google Scholar 

  40. Nichols WW, O’Rourke MF. Properties of the arterial wall. In: Nichols WW, O’Rourke MF, eds. McDonald’s Blood Flow in Arteries, 3rd ed. London: Edward Arnold, 1990: 99–102

    Google Scholar 

  41. Bank AJ. Physiologic aspects of drug therapy and large artery elastic properties. Vasc Med 1997;2:44–50.

    PubMed  CAS  Google Scholar 

  42. Wiggers CJ, Wegria R. Active changes in size and distensibility of the aorta during acute hypertension. Am J Physiol 1938;124:603.

    Google Scholar 

  43. Alexander RS. The influence of constrictor drugs on the distensibility of the splanchnic venous system, analyzed on the basis of an aortic model. Circ Res 1954;2:140–147.

    PubMed  CAS  Google Scholar 

  44. Peterson LH, Jensen RE, Parnell J. Mechanical properties of arteries in vivo. Circ Res 1960;8:622–639.

    Google Scholar 

  45. Safar ME, London GM, Bouthier JA, et al. Brachial artery cross-sectional area and distensibility before and after arteriolar vasodilation in men with sustained hypertension. J Cardiovasc Pharmacol 1987;9:734–742.

    Article  PubMed  CAS  Google Scholar 

  46. Safar ME, Laurent S, Bouthier JA, London GM. Comparative effects of captopril and isosorbide dinitrate on the arterial wall of hypertensive human brachial arteries. J Cardiovasc Pharmacol 1986;8:1257–1261.

    Article  PubMed  CAS  Google Scholar 

  47. Fitchett DHP. Forearm arterial compliance: a new measure of arterial compliance. Cardiovasc Res 1984;18:651–656.

    PubMed  CAS  Google Scholar 

  48. Westling H, Jansson L, Jonson B, Nilsen R. Vasoactive drugs and elastic properties of human arteries in vivo, with special reference to the action of nitroglycerine. Eur Heart J 1984;5:609–616.

    PubMed  CAS  Google Scholar 

  49. Bank AJ, Wilson RF, Kubo SH, et al. Direct effects of smooth muscle relaxation and contraction on in vivo brachial artery elastic properties. Circ Res 1995;77:1008–1016.

    PubMed  CAS  Google Scholar 

  50. Bank AJ, Wang H, Holte J, et al. The contribution of collagen, elastin and smooth muscle to in vivo human brachial artery wall stress and elastic modulus. Circulation 1996;94:3263–3270.

    PubMed  CAS  Google Scholar 

  51. Bank AJ, Kaiser DR. Smooth muscle relaxation: effects on arterial compliance, distensibility, elastic modulus and pulse wave velocity. Hypertension 1998;32:356–359.

    PubMed  CAS  Google Scholar 

  52. Murgo JP, Westerhof N, Giolima JP, Altobelli SA. Effects of exercise on aortic input impedance and pressure waveforms in normal humans. Circ Res 1981;48:334–343.

    PubMed  CAS  Google Scholar 

  53. Remington JW, Wood EH. Formation of the peripheral pulse contour in man. J Appl Physiol 1956;9:433–442.

    PubMed  CAS  Google Scholar 

  54. Berne RM, Levy MW. In: Berne RM, Levy MW, eds. Physiology, 2nd ed. St. Louis: CV Mosby, 1988:486–495.

    Google Scholar 

  55. Nichols WW, O’Rourke MF. Contours of pressure and flow waves in arteries. In: Nichols WW, O’Rourke MF, eds. McDonald’s Blood Flow in Arteries, 3rd ed. London: Edward Arnold, 1990:216–245

    Google Scholar 

  56. Little RC, Little WC. Physiology of the Heart and Circulation, 4th ed. Chicago: Year Book Medical, 1989:236–243.

    Google Scholar 

  57. Nichols WW, O’Rourke MF. McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles, 4th ed. London: Arnold; 1998:54.

    Google Scholar 

  58. O’Rourke MF, Kelly RP. Wave reflection in the systemic circulation and its implications in ventricular function. J Hypertens 1993;11:327–337.

    Article  PubMed  CAS  Google Scholar 

  59. Westerhof N, O’Rourke MF. Haemodynamic basis for the development of left ventricular failure in systolic hypertension and for its logical therapy. J Hypertens 1995;13:943–952.

    Article  PubMed  CAS  Google Scholar 

  60. Berger DS, Li JK, Laskey WK, et al. Repeated reflection of waves in the systemic arterial system. Am J Physiol 1993;264:269–281.

    Google Scholar 

  61. Berger DS, Li JK, Noordergaaf A. Arterial wave propagation phenomena, ventricular work, and power dissipation. Ann Biomed Eng 1995;23:804–811.

    Article  PubMed  CAS  Google Scholar 

  62. Quick CM, Berger DS, Noordergraaf A. Constructive and destructive addition of forward and reflected arterial pulse waves. Am J Physiol Heart Circ Physiol 2001;280:1519–1527.

    Google Scholar 

  63. Gross DR, Hunter JF, Allert JA, et al. Pressure-diameter relationship in the coronary artery of intact, awake calves. J Biomech 1981;14:613–620.

    Article  PubMed  CAS  Google Scholar 

  64. Pagani M, Gaig H, Shereman A, et al. Measurement of multiple simultaneous small dimensions and study of arterial pressure-diameter relation in conscious animals. Am J Physiol 1975;229:286–290.

    PubMed  CAS  Google Scholar 

  65. Vatner SF, Hintze TH. Effects of calcium-channel antagonist on large and small coronary arteries in conscious dogs. Circulation 1982;66:579–588.

    PubMed  CAS  Google Scholar 

  66. Barra JG, Armentano RL, Levenson J, et al. Assessment of smooth muscle contribution to descending thoracic aortic elastic mechanics in conscious dogs. Circ Res 1993;73:1040–1050.

    PubMed  CAS  Google Scholar 

  67. Patel DJ, Mallos AJ, Fry DL. Aortic mechanics in the living dog. J Appl Physiol 1961;16:293–299.

    PubMed  CAS  Google Scholar 

  68. Wetterer E, Bauer RD, Busse R. New ways of determining the propagation coefficient and the visco-elastic behavior of arteries in situ. In: Bauer RD, Busse R, eds. The Arterial System. New York: Springer-Verlag, 1978:35–47.

    Google Scholar 

  69. Merillon JP, Motte G, Fruchand J, et al. Evaluation of the elasticity and characteristic impedance of the ascending aorta in man. Cardiovasc Res 1978;12:401–406.

    PubMed  CAS  Google Scholar 

  70. Stefanidis C, Wooley CF, Bush CA, et al. Aortic distensibility abnormalities in coronary artery disease. Am J Cardiol 1987;59:1300–1304.

    Article  Google Scholar 

  71. Mohiaddin RH, Underwood SR, Bogren HG, et al. Regional aortic compliance studied by magnetic resonance imaging: the effects of age, training, and coronary artery disease. Br Heart J 1989;62:90–96.

    Article  PubMed  CAS  Google Scholar 

  72. Dart AM, LaLombe F, Yeoh JK, et al. Aortic distensibility in patients with isolated hypercholesterolaemia, coronary artery disease or cardiac transplant. Lancet 1991;338:270–273.

    Article  PubMed  CAS  Google Scholar 

  73. Mugge A, Daniel WG, Niedermeyer J, et al. Usefulness of a new automated boundary detection system (acoustic quantification) for assessing stiffness of the descending thoracic aorta by transesophageal echocardiography. Am J Cardiol 1992;70:1629–1631.

    Article  PubMed  CAS  Google Scholar 

  74. Stefanidis C, Dernellis J, Vlachopoulos C, et al. Aortic function in arterial hypertension determined by pressure-diameter relation: effects of diltiazem. Circulation 1996;96:1853–1858.

    Google Scholar 

  75. Dahn I, Jonson B, Nilsen R. Plethysmographic in vivo determination of elastic properties of arteries in man. J Appl Physiol 1970;28:328–332.

    PubMed  CAS  Google Scholar 

  76. Fitchett DH. Forearm arterial compliance: a new measure of arterial compliance. Cardiovasc Res 1984;18:651–656.

    PubMed  CAS  Google Scholar 

  77. Safar ME, Peronneau PA, Levenson JA, et al. Pulsed Doppler: diameter, velocity and flow of the brachial artery in sustained essential hypertension. Circulation 1981;63:393–400.

    PubMed  CAS  Google Scholar 

  78. Levenson JA, Peronneau PA, Simon A, Safar ME. Pulsed Doppler: determination of diameter, blood flow velocity and volumic flow of brachial artery in man. Cardiovasc Res 1981;15:164–170.

    PubMed  CAS  Google Scholar 

  79. Laurent S, Juillerat L, London GM, et al. Increased response of brachial artery diameter to norepinephrine in hypertensive patients. Am J Physiol 1988;255:H37–H43.

    Google Scholar 

  80. Buntin CM, Silver FH. Noninvasive assessment of mechanical properties of peripheral arteries. Ann Biomed Eng 1990;18:549–566.

    Article  PubMed  CAS  Google Scholar 

  81. Hayoz D, Rutschmann B, Perret F, et al. Conduit artery compliance and distensibility are not necessarily reduced in hypertension. Hypertension 1992;20:1–6.

    PubMed  CAS  Google Scholar 

  82. Boutouyrie P, Lacolley P, Girerd XJ, et al. Sympathetic activation decreases medium-sized arterial compliance in humans. Am J Physiol 1994;267:H1368–H1376.

    PubMed  CAS  Google Scholar 

  83. Joannides R, Richard V, Haefeli WE, et al. Role of basal and stimulated release of nitric oxide in the regulation of radial artery caliber in humans. Hypertension 1995;26:327–331.

    PubMed  CAS  Google Scholar 

  84. Van Merode TP, Hick PJJ, Hoeks APG, et al. Carotid artery wall properties in normotensive and borderline hypertensive subjects of various ages. Ultrasound Med Biol 1988;14:563–569.

    Article  PubMed  Google Scholar 

  85. Hoeks APG, Brandfs PJ, Smeeta FAM, Reneman RS. Assessment of the distensibility of superficial arteries. Ultrasound Med Biol 1990;16:121–128.

    Article  PubMed  CAS  Google Scholar 

  86. Bank AJ, Kaiser DR, Rajala SM, Chang A. Smooth muscle relaxation and in vivo human brachial artery elastic mechanics. Circulation 1999;100:41–47.

    PubMed  CAS  Google Scholar 

  87. Porter TR, Taylor D, Pandian NG, et al. Pulmonary arterial dynamics in congestive heart failure in humans: significance of pulmonary arterial stiffness. J Vasc Med Biol 1993;4:105–114.

    Google Scholar 

  88. Xu J, Shiota T, Omota R, et al. Intravascular ultrasound assessment of regional aortic wall stiffness, distensibility, and compliance in patients with coarctation of the aorta. Am Heart J 1997;134:93–98.

    Article  PubMed  CAS  Google Scholar 

  89. Reddy KG, Suneja R, Nair RN, et al. Measurement by intracoronary ultrasound of in vivo arterial distensibility within atherosclerotic lesions. Am J Cardiol 1993;72:1232–1237.

    Article  PubMed  CAS  Google Scholar 

  90. Kerber S, Heinemann-Vechtel O, Gunther F, et al. Coronary compliance in patients following orthotopic heart transplantation. An intravascular ultrasound study. Eur Heart J 1996;17:1891–1897.

    PubMed  CAS  Google Scholar 

  91. Alfonso F, Macaya C, Goicolea J, et al. Determinants of coronary compliance in patients with coronary artery disease: an intravascular ultrasound study. J Am Coll Cardiol 1994;23:879–884.

    PubMed  CAS  Google Scholar 

  92. Nakatani S, Yamagishi M, Tamai J, et al. Assessment of coronary artery distensibility by intravascular ultrasound: application of simultaneous measurements of luminal area and pressure. Circulation 1995;91:2904–2910.

    PubMed  CAS  Google Scholar 

  93. McDonald DA. Regional pulse-wave velocity in the arterial tree. J Appl Physiol 1968;24:73–78, 1968.

    PubMed  CAS  Google Scholar 

  94. Moens AI. Die Pulskurve. Leiden, the Netherlands: EJ Brill, 1878:90.

    Google Scholar 

  95. Bramwell JC, Hill AV. The velocity of the pulse wave in man. Proc R Soc Lond 1922;93B:298–306.

    Google Scholar 

  96. Mitchell GF, Pfeffer MA, Finn PV, Pfeffer JM. Comparison of techniques for measuring pulse-wave velocity in the rat. J Appl Physiol 1997;82:203–207.

    PubMed  CAS  Google Scholar 

  97. Milnor WR. Wave reflection. In: Milnor WR, ed. Hemodynamics. Baltimore: Williams & Wilkins, 1982:192–210.

    Google Scholar 

  98. Wright JS, Cruickshank JK, Kontis S, et al. Aortic compliance measured by non-invasive Doppler ultrasound: description of a method and its reproducibility. Clin Sci 1990;78:463–468.

    PubMed  CAS  Google Scholar 

  99. Smulyan H, Vardan S, Griffiths A, Gribbin B. Forearm arterial distensibility in systolic hypertension. J Am Coll Cardiol 1984;3:387–393.

    PubMed  CAS  Google Scholar 

  100. Finkelstein SM, Collins VR. Vascular hemodynamic impedance measurement. Prog Cardiovasc Dis 1982;24:401–418.

    Article  PubMed  CAS  Google Scholar 

  101. Chang K-C, Hsieh K-S, Kuo T-S, Chen HI. Effects of nifedipine on systemic hydraulic vascular load in patients with hypertension. Cardiovasc Res 1990;24:719–726.

    PubMed  CAS  Google Scholar 

  102. Fitchett DH, Simkus GJ, Beaudry JP, Marpole DGF. Reflected pressure waves in the ascending aorta: effect of glyceryl trinitrate. Cardiovasc Res 1988;22:494–500.

    PubMed  CAS  Google Scholar 

  103. McVeigh GE, Finkelstein SM, Cohn JN. Assessment of arterial compliance in hypertension. Curr Opin Nephrol Hypertens 1993;2:82–86.

    PubMed  CAS  Google Scholar 

  104. Goldwyn RM, Watt TB Jr: Arterial pressure pulse contour analysis via a mathematical model for the clinical quantification of human vascular properties. IEEE Trans Biomed Eng 1967;14:11–17.

    Google Scholar 

  105. Watt TB Jr, Burrus CS. Arterial pressure contour analysis for estimating human vascular properties. J Appl Physiol 1976;40:171–176.

    PubMed  Google Scholar 

  106. Freis ED, Heath WC, Luchsinger PC, Snell AE. Changes in the carotid pulse which occur with age and hypertension. Am Heart J 1966;71:757–765.

    Article  PubMed  CAS  Google Scholar 

  107. Frank O. Die Grundform des areriellen Pulses. Z Biol 1899;37:483–526.

    Google Scholar 

  108. Quick CM, Berger DS, Noordergraaf A. Apparent arterial compliance. Am J Physiol 1998;274:H1393–H1403.

    PubMed  CAS  Google Scholar 

  109. O’Rourke MF, Kelly RP. Wave reflection in the systemic circulation and its implications in ventricular function. J Hypertens 1993;11:327–337.

    Article  PubMed  CAS  Google Scholar 

  110. Roman MJ, Saba S, Pini R, et al. Parallel cardiac and vascular adaptation in hypertension. Circulation 1992;86:1909–1918.

    PubMed  CAS  Google Scholar 

  111. Sharir T, Marmor A, Ting CT, et al. Validation of a method for non-invasive measurement of central arterial pressure. Hypertension 1993;21:74–82.

    PubMed  CAS  Google Scholar 

  112. Nichols WW, Avolio AP, Kelly RP, O’Rourke MF. Effects of age and of hypertension on wave travel and reflections. In: O’Rourke MF, Safar ME, Dzau VJ, eds. Arterial Vasodilation. Mechanisms and Therapy. Philadelphia: Lea & Febiger, 1993:23–40

    Google Scholar 

  113. Karamanoglu M, O’Rourke MF, Avolio AP, et al. An analysis of the relationship between central aortic and peripheral upper limb pressure waves in man. Eur Heart J 1993;14:160–167.

    PubMed  CAS  Google Scholar 

  114. Wilkinson IB, MacCallum H, Flint L, et al. The influence of heart rate on augmentation index and central arterial pressure in humans. J Physiol 2000;525:263–270.

    Article  PubMed  CAS  Google Scholar 

  115. Cameron JD, McGrath BP, Dart AM. Use of radial artery applanation tonometry and a generalized transfer function to determine aortic pressure augmentation in subjects with treated hypertension. J Am Coll Cardiol 1998;32:1214–1220.

    Article  PubMed  CAS  Google Scholar 

  116. London GM, Blacher J, Pannier B, et al. Arterial wave reflections and survival in end stage renal failure. Hypertension 2001;38:434–438.

    PubMed  CAS  Google Scholar 

  117. McVeigh GE. Pulse wave form analysis and arterial wall properties. Hypertension 2003;41:1010–1011.

    Article  PubMed  CAS  Google Scholar 

  118. Millasseau SC, Patel SJ, Redwood SR, et al. Pressure wave reflection assessed from the peripheral pulse: is a transfer function necessary? Hypertension 2003;41:1016–1020.

    Article  PubMed  CAS  Google Scholar 

  119. Gatzka CD, Cameron JD, Dart AM, et al. Correction of carotid augmentation index for heart rate in elderly essential hypertensives. Am J Hypertens 2001;14:573–577.

    Article  PubMed  CAS  Google Scholar 

  120. Yasmin, Brown MJ. Similarities and differences between augmentation index and pulse wave velocity in the assessment of arterial stiffness. Q J Med 1999;92:595–600.

    CAS  Google Scholar 

  121. Lemogoum D, Flores G, Van den Abeele W, et al. Validity of pulse pressure and augmentation index as surrogate measures of arterial stiffness during beta-adrenergic stimulation. J Hypertens 2004;22:511–517.

    Article  PubMed  CAS  Google Scholar 

  122. Lacy PS, O’Brien DG, Stanley AG, Dewar MM, Swales PP, Williams B. Increased pulse wave velocity is not associated with elevated augmentation index in patients with diabetes. J Hypertens 2004;22:1937–1944.

    Article  PubMed  CAS  Google Scholar 

  123. Kingwell BA, Gatzka CD. Arterial stiffness and prediction of cardiovascular risk. J Hypertens 2002;20:2337–2340.

    Article  PubMed  CAS  Google Scholar 

  124. Hoeks AP, Meinders JM, Dammers R. Applicability and benefit of arterial transfer functions. J Hypertens 2003;21:1241–1243.

    Article  PubMed  CAS  Google Scholar 

  125. Giannattasio C. How to assess central arterial blood pressure? J Hypertens 2003;21:495–498

    Article  PubMed  CAS  Google Scholar 

  126. Hope SA, Tay DB, Meredith IT, et al. Use of arterial transfer functions for the derivation of aortic waveform characteristics. J Hypertens 2003;21:1299–1305.

    Article  PubMed  CAS  Google Scholar 

  127. Davies JI, Band MM, Pringle S, et al. Peripheral blood pressure measurement is as good as applanation tonometry at predicting ascending aortic blood pressure. J Hypertens 2003;21:571–576.

    Article  PubMed  CAS  Google Scholar 

  128. Cloud GC, Rajkumar C, Kooner J, et al. Estimation of central aortic pressure by SphygmoCor requires intra-arterial peripheral pressures. Clin Sci 2003;105:219–225.

    Article  PubMed  Google Scholar 

  129. Hope SA, Tay DB, Meredith IT, et al. Use of arterial transfer functions for the derivation of aortic waveform characteristics. J Hypertens 2003;21:1299–1305.

    Article  PubMed  CAS  Google Scholar 

  130. Hope SA, Meredith IT, Cameron JD. Effect of non-invasive calibration of radial waveforms on error in transfer-function-derived central aortic waveform characteristics. Clin Sci 2004;107:205–211.

    Article  PubMed  Google Scholar 

  131. Shock NW. Aging of physiological systems. J Chronic Dis 1983;36:137–142.

    Article  Google Scholar 

  132. Fleg JL. Alterations in cardiovascular structure and function with advancing age. Am J Cardiol 1986;57:33C–44C.

    Article  PubMed  CAS  Google Scholar 

  133. Salisbury PF, Cross CE, Rieben PA. Ventricular performance modified by elastic properties of outflow system. Circ Res 1962;11:319–328.

    PubMed  CAS  Google Scholar 

  134. Leithe ME, Heriller JB, Magorien RD, et al. The effect of age on central and regional hemodynamics. Gerontology 1984;30:240–246.

    PubMed  CAS  Google Scholar 

  135. Stout RW. Aging and atherosclerosis. Age Aging 1987;16:65–72.

    Article  CAS  Google Scholar 

  136. Auerbach O, Hammond EC, Garfinkel L. Thickening of walls of arterioles and small arteries in relation to age and smoking habits. N Engl J Med 1968;278:980–984.

    Article  PubMed  CAS  Google Scholar 

  137. Gerrity RG, Cliff WJ. The aortic tunica media of the developing rat, Part I. Quantitative stereologic and biochemical analysis. Lab Invest 1975;32:585–600.

    PubMed  CAS  Google Scholar 

  138. Bakris GL, Bank AJ, Kass DA, Nuetel JM, Preston RA, Oparil S. Advanced glycation end-product cross-link breakers. Am J Hypertens 2004;17:23S–30S.

    Article  PubMed  CAS  Google Scholar 

  139. Schimmler W. Correlation between the pulse wave velocity in the aortic-iliac vessel and age, sex and blood pressure. Angiology 1966;17:314–322.

    Article  PubMed  CAS  Google Scholar 

  140. Avolio AP, Chen S-G, Wang R-P, et al. Effects of aging on changing arterial compliance and left ventricular load in a Northern Chinese urban community. Circulation 1983;68:50–58.

    PubMed  CAS  Google Scholar 

  141. Whelton PK. Blood pressure in adults and the elderly. In: Bulpitt CJ, ed. Handbook of Hypertension. Amsterdam, Netherlands: Eslevier, 1985:51–69.

    Google Scholar 

  142. Burt VL, Whelton P, Rocella EJ, et al. Prevalence of hypertension in the US adult population: results from the Third National Health and Nutrition Examination Survey, Hypertension 1995;25:305–313.

    PubMed  CAS  Google Scholar 

  143. Franklin SS, Gustin W, Wong ND, et al. Hemodynamic patterns of age-related changes in blood pressure: the Framingham Heart Study. Circulation 1997;96:308–315.

    PubMed  CAS  Google Scholar 

  144. Khattar RS, Swales JD, Dore C, et al. Effect of aging on the prognostic significance of ambulatory systolic, diastolic, and pulse pressure in essential hypertension. Circulation 2000;1204:783–789.

    Google Scholar 

  145. Franklin SS, Larson MG, Khan SA, et al. Does the relation of blood pressure to coronary heart disease risk change with aging? The Framingham Heart Study. Circulation 2001;103:1245–1249.

    PubMed  CAS  Google Scholar 

  146. Franklin SS, Khan SA, Wong ND, et al. Is pulse pressure useful in predicting risk for coronary heart disease? The Framingham Heart Study. Circulation 1999;100:354–360.

    PubMed  CAS  Google Scholar 

  147. Miura K, Dyer AR, Greenland P, et al. Pulse pressure compared with other blood pressure indexes in the prediction of 25-year cardiovascular and all-cause mortality rates. Hypertension 2001;38:232–237.

    PubMed  CAS  Google Scholar 

  148. Simonson E, Nakagawa K. Effect of age on pulse wave velocity and aortic ejection time in healthy men and in men with coronary artery disease. Circulation 1960;22:126–129.

    PubMed  CAS  Google Scholar 

  149. Smulyan H, Csermely TJ, Mookherjee S, Warner RA. Effect of age on distensibility in asymptomatic humans. Arteriosclerosis 1983;3:199–205.

    PubMed  CAS  Google Scholar 

  150. Avolio AP, Deng F-Q, Li W-Q, et al. Effects of aging on arterial distensibility in populations with high and low prevalence of hypertension: comparison between urban and rural communities in China. Circulation 1985;71:202–210.

    PubMed  CAS  Google Scholar 

  151. Laogun AA, Gosling RG. In vivo arterial compliance in man. Clin Phys Physiol Meas 1982;3:201–212.

    Article  PubMed  CAS  Google Scholar 

  152. Sonesson B, Hansen F, Stale H, et al. Compliance and diameter in the human abdominal aorta—the influence of age and sex. Eur J Vasc Surg 1993;7:690–697.

    Article  PubMed  CAS  Google Scholar 

  153. Mitchell GF, Parise H, Benjamin EJ, et al. Changes in arterial stiffness and wave reflection with advancing age in healthy men and women. The Framingham Heart Study. Hypertension 2004;43:1239–1245.

    Article  PubMed  CAS  Google Scholar 

  154. Kelly R, Hayward C, Avolio A, et al. Noninvasive determination of age-related changes in the human arterial pulse. Circulation 1989;80:1652–1659.

    PubMed  CAS  Google Scholar 

  155. Walsh RA. Cardiovascular effects of the aging process. Am J Med 1987;82(suppl 1B):34–40.

    Article  PubMed  CAS  Google Scholar 

  156. Lemogoum D, Van Bortel L, Van den Abelle W, et al. Effect of beta-adrenergic stimulation on pulse wave velocity in black and white subjects. J Hypertens 2004;22:2349–2353.

    Article  PubMed  CAS  Google Scholar 

  157. Shirasaki Y, Su C, Lee TJ-F, et al. Endothelial modulation of vascular relaxation to nitrovasodilators in aging and hypertension. J Pharmacol Exp Ther 1986;239:861–866.

    PubMed  CAS  Google Scholar 

  158. Yin FCP, Weisfeldt ML, Milnor WR. Role of aortic input impedance in the decreased cardiovascular response to exercise with aging dogs. J Clin Invest 1986;68:28–38.

    Google Scholar 

  159. Gundel W, Cherry G, Rajagopalan B, et al. Aortic input impedance in man: acute response to vasodilator drugs. Circulation 1981;63:1305–1314.

    PubMed  CAS  Google Scholar 

  160. Nichols WW, O’Rourke MF, Avolio AP, et al. Effects of age on ventricular-vascular coupling. Am J Cardiol 1985;55:1179–1184.

    Article  PubMed  CAS  Google Scholar 

  161. Linzbach AJ, Akuamoa-Boateng E. Die alternsveranderungen des menschlichen herzens. I. Das Herzgewicht im alter. Klin Wochenschr 1973;52:156–163.

    Article  Google Scholar 

  162. Gerstenblith G, Fredericksen J, Yin FCP, et al. Echocardiographic assessment of a normal adult aging population. Circulation 1977;56:273–278.

    PubMed  CAS  Google Scholar 

  163. Capasso JM, Sonnenblick EH. Myocardial hypertrophy and diastolic heart failure in the aging heart. Heart Failure 1986;3:219–227.

    Google Scholar 

  164. Lakatta EG. Cardiovascular system aging. In: Kent B, Butler R, eds. Human Aging Research: Concepts and Techniques. New York: Raven, 1988:199–219.

    Google Scholar 

  165. Rosenthal J. Aging and the cardiovascular system. Gerontology 1987;33(suppl 1):3–8.

    PubMed  Google Scholar 

  166. Landowne M, Brandfonbrener M, Shock NW. The relation of age to certain measures of performance of the heart and circulation. Circulation 1955;12:567–576.

    PubMed  CAS  Google Scholar 

  167. Wallace AG. Pathophysiology of cardiovascular disease. In: Smith LH Jr, Their SO, eds. Pathophysiology: The Biological Principles of Disease. Philadelphia: WB Saunders, 1981:1162–1167.

    Google Scholar 

  168. Van Merode T, Brands PJ, Hoeks APG, Reneman RS. Different effects of ageing on elastic and muscular arterial bifurcations in men. J Vasc Res 1996;33:47–52.

    PubMed  Google Scholar 

  169. Khder Y, Des Boscs L, Aliot E, Zannad F. Endothelial, viscoelastic and sympathetic factors contributing to the arterial wall changes during aging. Cardiol Elderly 1996;4:161–165.

    Google Scholar 

  170. Greenwald SE. Pulse pressure and arterial elasticity. Q J Med 2002;55:1–6.

    Google Scholar 

  171. Riley WA, Barnes RW, Evans GW, et al. Ultrasonic measurement of the elastic modulus of the common carotid artery. The atherosclerosis risk in communities (ARIC study). Stroke 1992;23:952–956.

    PubMed  CAS  Google Scholar 

  172. Hansen F, Mangell P, Sonesson B, et al. Diameter and compliance in the human common carotid artery—variations with age and sex. Ultrasound Med Biol 1995;21:1–9.

    Article  PubMed  CAS  Google Scholar 

  173. Van Merode T, Brands PJ, Hoeks APG, Reneman RS. Different effects of ageing on elastic and muscular arterial bifurcations in men. J Vasc Res 1996;33:47–52.

    Article  PubMed  Google Scholar 

  174. Benetos A, Laurent S, Hoeks AP, et al. Arterial alterations with aging and high blood pressure. Arterioscler Thromb 1993;13:90–97.

    PubMed  CAS  Google Scholar 

  175. Van Merode T, Brands PJ, Hoeks AP, Reneman RS. Faster ageing of the carotid artery bifurcation in borderline hypertensive subjects. J Hypertens 1993;11:171–176.

    Article  PubMed  Google Scholar 

  176. Reneman RS, Hoeks AP. Noninvasive vascular ultrasound: An asset in vascular medicine. Cardiovasc Res 2000;45:27–35.

    Article  PubMed  CAS  Google Scholar 

  177. Gandley REM, McLaughlin MK, Koob TJ, et al. Contribution to chondroitin-dermatan sulfate-containing proteoglycans to the function of rat mesenteric arteries. Am J Physiol 1997;42:H952–H960.

    Google Scholar 

  178. McVeigh GE, Bratteli CW, Morgan DJ, et al. Age-related abnormalities in arterial compliance identified by pressure pulse contour analysis. Hypertension 1999;33:1392–1398.

    PubMed  CAS  Google Scholar 

  179. Farrar DJ, Green HD, Bond MG, et al. Aortic pulse wave velocity, elasticity and composition in a non-human primate model of atherosclerosis. Circ Res 1978;43:52–62.

    PubMed  CAS  Google Scholar 

  180. Farrar DJ, Green HD, Wagner WD, Bond MG. Reduction in pulse wave velocity and improvement of aortic distensibility accompanying regression of atherosclerosis in the rhesus monkey. Circ Res 1980;47:425–432.

    PubMed  CAS  Google Scholar 

  181. Nakashima T, Tanikawa J. A study of human aortic distensibility with relation to atherosclerosis and aging. Angiology 1971;22:477–490.

    Article  PubMed  CAS  Google Scholar 

  182. van Popele NM, GR’Obbee DE, Bots ML, et al. Association between arterial stiffness and atherosclerosis: The Rotterdam Study. Stroke 2001;32:454–460.

    PubMed  Google Scholar 

  183. Hirai T, Sasayama S, Kawasaki T, et al. Stiffness of systemic arteries in patients with myocardial infarction: a non-invasive method to predict severity of coronary atherosclerosis. Circulation 1989;80:78–86.

    PubMed  CAS  Google Scholar 

  184. Gatzka CD, Cameron JD, Kingwell BA, et al. Relation between coronary artery disease, aortic stiffness and left ventricular structure in a population sample. Hypertension 1998;32:575–578.

    PubMed  CAS  Google Scholar 

  185. Stefanadis C, Stratos C, Boudoulas H, Kourouklis C, et al. Distensibility of the ascending aorta: comparison of invasive and noninvasive techniques in healthy men and in men with coronary artery disease. Eur Heart 1990;11:990–996.

    CAS  Google Scholar 

  186. Megnien JL, Simon A, Denarie N, et al. Aortic stiffening does not predict coronary and extra coronary atherosclerosis in asymptomatic men at risk for cardiovascular disease. Am J Hypertens 1998;11:293–301.

    Article  PubMed  CAS  Google Scholar 

  187. Lehmann ED. Clinical value of aortic pulse wave velocity measurement. Lancet 1999;354:528–529.

    Article  PubMed  CAS  Google Scholar 

  188. Hickler RB. Aortic and large artery stiffness: current methodology and clinical correlations. Clin Cardiol 1990;13:317–322.

    PubMed  CAS  Google Scholar 

  189. El-Tamimi H, Mansour M, Wargovich TJ, et al. Constrictor and dilator responses in intracoronary acetylcholine in adjacent segments of the same coronary artery in patients with coronary disease. Circulation 1994;89:45–51.

    PubMed  CAS  Google Scholar 

  190. Störk S. van den Beld AW, von Schacky C, et al. Carotid artery plaque burden, stiffness, and mortality risk in elderly men. A prospective, population-based cohort study. Circulation 2004;110:344–348.

    Article  PubMed  Google Scholar 

  191. Zureik M, Temmar M, Adamopoulos C, et al. Carotid plaques, but not common carotid intima-media thickness, are independently associated with aortic stiffness. J Hypertens 2002;20:85–93.

    Article  PubMed  CAS  Google Scholar 

  192. Polak JF, Shemanski L, O’Leary DH et al. Hypoechoic plaque at US of the carotid artery: an independent risk factor for incident stroke in adults age 65 years or older: Cardiovascular Health Study. Radiology 1998;208:649–654.

    PubMed  CAS  Google Scholar 

  193. Gronholdt ML, Nordestgaard BG, Schroeder TV, et al. Ultrasonic echolucent carotid plaques predict future strokes. Circulation 2001;104:68–73.

    Article  PubMed  CAS  Google Scholar 

  194. Herrington DM, Brown WV, Mosca L, et al. Relationship between arterial stiffness and subclinical aortic atherosclerosis. Circulation 2004;110:432–437.

    Article  PubMed  Google Scholar 

  195. Herrington DM, Kesler K, Reiber JHC, et al. Arterial compliance adds to conventional risk factors for prediction of angiographic coronary artery disease. Am Heart J 2003;4:662–667.

    Article  Google Scholar 

  196. Bots ML, Dijk JM, Oren A, et al. Carotid intima-media thickness, arterial stiffness and risk of cardiovascular disease: current evidence. J Hypertens 2002;20:2317–2325.

    Article  PubMed  CAS  Google Scholar 

  197. Grey E, Bratteli C, Glasser SP, et al. Reduced small artery but not large artery elasticity is an independent risk marker for cardiovascular events. Am Heart J 2003;16:265–269.

    Google Scholar 

  198. Versluis A, Bank AJ, Douglas WH. Fatigue and plaque rupture in myocardial infarction. J Biomech 2006;39(2):339–347.

    Article  PubMed  Google Scholar 

  199. Bank AJ, Versluis A, Dodge SM, Douglas WH. Atherosclerotic plaque rupture: a fatigue process? Med Hypotheses 2000;55(6):480–484.

    Article  PubMed  CAS  Google Scholar 

  200. Loree HM, Kamm RD, Stringfellow RG, Lee RT. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res 1992;71:850–858.

    PubMed  CAS  Google Scholar 

  201. Richardson PD, Davies MJ, Born GUR. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 1989;2:941–944.

    Article  PubMed  CAS  Google Scholar 

  202. Staessen JA, Wang J, Bianchi G, et al. Essential hypertension. Lancet 2002;361:1620–1641.

    Google Scholar 

  203. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure: the JNC 7 report. JAMA 2003;289:2560–2572.

    Article  Google Scholar 

  204. Guidelines Committee, European Society of Hypertension-European Society of Cardiology guidelines for the management of arterial hypertension. J Hypertens 2003;21:1011–1054.

    Article  Google Scholar 

  205. Panza JA. High-normal blood pressure—more “high” than “normal.” N Engl J Med 2001;345:1337–1340.

    Article  PubMed  CAS  Google Scholar 

  206. The endothelium and atherosclerosis progression. Am J Hypertens 2002;15:115S–122S.

    Google Scholar 

  207. Park JB, Schiffrin EL. Small artery remO’Delling is the most prevalent (earliest?) form of target organ damage in mild essential hypertension. J Hypertens 2001;19:921–930.

    Article  PubMed  CAS  Google Scholar 

  208. McVeigh GE, Hamilton PK, Morgan DR. Evaluation of mechanical arterial properties: clinical experimental and therapeutic aspects. Clin Sci 2002;102:51–67.

    Article  PubMed  Google Scholar 

  209. Pries AR, Secomb TW, Gaehtgens P. Structural autoregulation of terminal vascular beds: vascular adaptation and development of hypertension. Hypertension 1999;33:153–161.

    PubMed  CAS  Google Scholar 

  210. Safar ME, Levy BI, Struijker-Boudier H. Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Circulation 2003;107:2864–2869.

    Article  PubMed  Google Scholar 

  211. van der Heijden-Spek JJ, Staessen JA, Fagard RH, et al. Effect of age on brachial artery wall properties differs from the aorta and is gender dependent: a population study. Hypertension 2000;35:637–642.

    PubMed  Google Scholar 

  212. Laurent S, Hayoz D, Trazzi S, et al. Isobaric compliance of the radial artery is increased in patients with essential hypertension. J Hypertens 1993;11:89–98.

    Article  PubMed  CAS  Google Scholar 

  213. Laurent S, Girerd X, Mourad J, et al. Elastic modulus of the radial artery wall material is not increased in patients with essential hypertension. Artherioscler Thromb 1994;14:1223–1231.

    CAS  Google Scholar 

  214. Laurent S, Caviezel BM, Beck L, et al. Carotid artery distensibility and distending pressure in hypertensive humans. Hypertension 1994;23:878–883.

    PubMed  CAS  Google Scholar 

  215. Hayoz D, Rutschmann B, Perret F, et al. Conduit artery compliance and distensibility are not necessarily reduced in hypertension. Hypertension 1992;20:1–6.

    PubMed  CAS  Google Scholar 

  216. Bussy C, Boutouyrie P, Lacolley P, Challande P, Laurent S. Intrinsic stiffness of the carotid arterial wall material in essential hypertensives. Hypertension 2000;35(5):1049–1054.

    PubMed  CAS  Google Scholar 

  217. Franklin SS, Larson MG, Khan SA, et al. Does the relation of blood pressure to coronary heart disease risk change with aging? The Framingham Heart Study. Circulation 2001;103:1245–1249.

    PubMed  CAS  Google Scholar 

  218. Miura K, Dyer AR, Greenland P, et al. Pulse pressure compared with other blood pressure indexes in the prediction of 25-year cardiovascular and all-cause mortality rates. Hypertension 2001;38:232–237.

    PubMed  CAS  Google Scholar 

  219. Laurent S, Boutouyrie P, Asmar R, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 2001;37:1236–1241.

    PubMed  CAS  Google Scholar 

  220. Suematsu M, Suzuki H, Delano FA, et al. The inflammatory aspect of the microcirculation in hypertension: oxidative stress, leukocytes/endothelial interaction, apoptosis. Microcirculation 2002;9:259–276.

    Article  PubMed  CAS  Google Scholar 

  221. Levy BI, Ambrosio G, Pries HR, et al. Microcirculation in hypertension: a new target for treatment? Circulation 2001;104:735–740.

    Article  PubMed  CAS  Google Scholar 

  222. Christensen KL, Mulvany MJ. Vasodilatation, not hypotension, improves resistance vessel design during treatment of essential hypertension: a literature survey. J Hypertens 2001;19:1001–1006.

    Article  PubMed  CAS  Google Scholar 

  223. Rizzoni D, Porteri E, Boari GE, et al. Prognostic significance of small-artery structure in hypertension. Circulation 2003;108:2330–2335.

    Article  Google Scholar 

  224. Grey E, Bratteli C, Glasser SP, et al. Reduced small artery but not large artery elasticity is an independent risk marker for cardiovascular events. Am J Hypertens 2003;16:265–269.

    Article  PubMed  Google Scholar 

  225. Van Bortel L. Focus on small artery stiffness. J Hypertens 2002;20:1707–1709.

    Article  PubMed  Google Scholar 

  226. Arosio E, De Marchi S, Prior M, et al. Effects of nebivolol and atenolol on small arteries and microcirculatory endothelium-dependent dilation in hypertensive patients undergoing isometric stress. J Hypertens 2002;20:1793–1797.

    Article  PubMed  CAS  Google Scholar 

  227. Glasser SP, Arnett DK, McVeigh GE, et al. The importance of arterial compliance in cardiovascular drug therapy. J Clin Pharmacol 1998;38:202–212.

    PubMed  CAS  Google Scholar 

  228. Schiffrin EL, Park JB, Intengan HD, et al. Correction of arterial structure and endothelial dysfunction in human essential hypertension by the angiotensin receptor antagonist losartan. Circulation 2000;101:1653–1659.

    PubMed  CAS  Google Scholar 

  229. Colwell JA, Lopes-Virella MF. A review of the development of large vessel disease in diabetes mellitus. Am J Med 1988;85(suppl 5A):113–118.

    Article  PubMed  CAS  Google Scholar 

  230. Siperstein MD. Diabetic microangiopathy, genetics, environment and treatment. Am J Med 1988;85:(suppl 5A):119–130.

    Article  PubMed  CAS  Google Scholar 

  231. Garcia MJ, McNamara PM, Gordon T, Kannel WB. Morbidity and mortality in diabetics in the Framingham population. Sixteen year follow-up study. Diabetes 1974;23:105–111.

    PubMed  CAS  Google Scholar 

  232. Ruderman NB, Haudenschild C. Diabetes as an atherogenic factor. Prog Cardiovasc Dis 1984;26:373–408.

    Article  PubMed  CAS  Google Scholar 

  233. Freedman DS, Gruchow HW, Bamrah VS, et al. Diabetes mellitus and arteriographically-documented coronary artery disease. J Clin Epidemiol 1988;41:659–668.

    Article  PubMed  CAS  Google Scholar 

  234. Waller BF, Palumbo PJ, Lie JT, Roberts WC. Status of the coronary arteries at necropsy in diabetes mellitus with onset after age 30 years. Analysis of 229 diabetic patients with and without clinical evidence of coronary heart disease and comparison to 183 control subjects. Am J Med 1980;69:498–506.

    Article  PubMed  CAS  Google Scholar 

  235. Ledet T, Heickendorff L, Rasmussen LM. Pathology of macrovascular disease. In: Nattrass M, Hale PJ, eds. Bailliere’s Clinical Endocrinology and Metabolism, vol. 2, No. 2. Non-Insulin Dependent Diabetes. Eastbourne, England: Bailliere Tindall, 1988:391–405.

    Google Scholar 

  236. Ledet T. Diabetic macroangiopathy and growth hormone. Diabetes 1981;30(suppl):14–17.

    PubMed  CAS  Google Scholar 

  237. Legg MA, Harawi SJ. In: Marble A, Krall LP, Bradley RF, et al., eds. Joslin’s Diabetes Mellitus, 12th ed. Philadelphia: Lea & Febiger, 1975:298–331.

    Google Scholar 

  238. Barnett AH. Pathogenesis of diabetic microangiopathy. An overview. Am J Med 1991;90(suppl 6A):67S–73S.

    Article  PubMed  CAS  Google Scholar 

  239. Lorenzi M, Cagliero E. Pathobiology of endothelial and other vascular cells in diabetes mellitus. Diabetes 1991;40:653–659.

    Article  PubMed  CAS  Google Scholar 

  240. Merimee TJ. Diabetic retinopathy. A synthesis of perspectives. N Engl J Med 1990;322:978–983.

    Article  PubMed  CAS  Google Scholar 

  241. Mather K, Lewanszuk R. Measurement of arterial stiffness in diabetes. A cautionary tale. Diabetes Care 2004;27:831–833.

    Article  PubMed  Google Scholar 

  242. Romney JS, Lewanczuk RZ. Vascular compliance is reduced in the early states of type 1 diabetes. Diabetes Care 2001;24:2102–2106.

    Article  PubMed  CAS  Google Scholar 

  243. Jennings GLR, Kingwell BA. Measuring arterial function in diabetes. J Hypertens 2004;22:1863–1865.

    Article  PubMed  CAS  Google Scholar 

  244. Hope SA, Tay DB, Meredith IT, et al. Use of arterial transfer functions for the derivation of central aortic waveform characteristics in subjects with type 2 diabetes and cardiovascular disease. Diabetes Care 2004;27:746–751.

    Article  PubMed  Google Scholar 

  245. Kimoto E, Shoji T, Shinohara K, et al. Preferential stiffening of central over peripheral arteries in type 2 diabetes. Diabetes 2003;52:448–452.

    Article  PubMed  CAS  Google Scholar 

  246. Schram MT, Chaturvedi N, Fuller JH, et al. Pulse pressure is associated with age and cardiovascular disease in type 2 diabetes: the Eurodiab Prospective Complications Study. J Hypertens 2003;21:2035–2044.

    Article  PubMed  CAS  Google Scholar 

  247. Henry RMA, Kostense PJ, Spijkerman AMW, et al. Arterial stiffness increases with deteriorating glucose tolerance status. Circulation 2003;107:2089–2095.

    Article  PubMed  Google Scholar 

  248. Cameron JD, Bulpitt CJ, Pinto EA, et al. The aging of elastic muscular arteries. Diabetes Care 2003;26:2133–2138.

    Article  PubMed  Google Scholar 

  249. De Angelis L, Millasseau SC, Smith A, et al. Sex differences in age-related stiffening of the aorta in subjects with type 2 diabetes. Hypertension 2004;44:67–71.

    Article  PubMed  CAS  Google Scholar 

  250. Benetos A. Pulse pressure and arterial stiffness in type 1 diabetic patients. J Hypertens 2003;21:2005–2007.

    Article  PubMed  CAS  Google Scholar 

  251. Oxlund H, Rasmussen LM, Andreassen TT, et al. Increased aortic stiffness in patients with type 1 (insulin dependent) diabetes mellitus. Diabetologia 1989;32:748–752.

    Article  PubMed  CAS  Google Scholar 

  252. Hu J, Wallensteen M, Gennser G. Increased stiffness of the aorta in children and adolescents with insulin-dependent diabetes mellitus. Ultrasound Med Biol 1996;22:748–752.

    Article  Google Scholar 

  253. Berry KL, Skyrme-Jones AP, Cameron JD, et al. Systemic arterial compliance is reduced in young patients with IDDM. Am J Physiol 1999;276:H1839–H1845.

    PubMed  CAS  Google Scholar 

  254. Pillsbury HC, Hung W, Kyle MC, et al. Arterial pulse waves and velocity and systolic time intervals in diabetic children. Am Heart J 1974;87:783–790.

    Article  PubMed  Google Scholar 

  255. Salomaa V, Riley W, Kark JD, et al. Non-insulin-dependent diabetes mellitus and fasting glucose and insulin concentrations are associated with arterial stiffness indexes. The ARIC study. Circulation 1995;91:1432–1443.

    PubMed  CAS  Google Scholar 

  256. Taniwaki H, Kawagishi T, Emoto M, et al. Correlation between the intima-media thickness of the carotid artery and aortic pulse-wave velocity in patients with type 2 diabetes. Diabetes Care 1999;22:1851–1857.

    Article  PubMed  CAS  Google Scholar 

  257. Gunn GC, Dobson MD, Gray J, et al. Studies of pulse wave velocity in potential diabetic subjects. Diabetes 1965;14:489–492.

    PubMed  CAS  Google Scholar 

  258. Airaksinen KEJ, Salmela PI, Linnaluto MK, et al. Diminished arterial elasticity in diabetes: association with fluorescent advances glycosylation end products in collagen. Cardiovasc Res 1993;27:942–945.

    PubMed  CAS  Google Scholar 

  259. Megnien JL, Simon A. Valensi P, et al. Comparative effects of diabetes mellitus and hypertension on physical properties of human large arteries. J Am Coll Cardiol 1992;20:1562–1568.

    PubMed  CAS  Google Scholar 

  260. Woolam GL, Schnur BS, Vallbona C, et al. The pulse wave velocity as an early indicator of atherosclerosis in diabetic subjects. Circulation 1962;25:533–539.

    PubMed  CAS  Google Scholar 

  261. Giannattasio C, Failla M, Piperno A, et al. Early impairment of large artery structure and function in type 1 diabetes mellitus. Diabetologia 1999;42:987–994.

    Article  PubMed  CAS  Google Scholar 

  262. Giannattasio C, Failla M, Grappiolo A, et al. Progression of large artery structural and functional alterations in type 1 diabetes. Diabetologia 2001;44:203–208.

    Article  PubMed  CAS  Google Scholar 

  263. Schram MT, Henry RMA, van Dijk, et al. Increased central artery stiffness in impaired glucose metabolism and type 2 diabetes. The Hoorn Study. Hypertension 2004;43:176–181.

    Article  PubMed  CAS  Google Scholar 

  264. Hopkins KD, Lehmann ED, Jones RL, et al. A family history of NIDDM is associated with decreased aortic distensibility in normal healthy young adult subjects. Diabetes Care 1996;19:501–503.

    Article  PubMed  CAS  Google Scholar 

  265. Kool MJ, Lambert J, Stehouwer CD, et al. Vessel wall properties of large arteries in uncomplicated IDDM. Diabetes Care 1995;18:618–624.

    Article  PubMed  CAS  Google Scholar 

  266. Scarpello JHB, Martin TRP, Ward JD. Ultrasound measurements of pulse wave velocity in the peripheral arteries of diabetic subjects. Clin Sci 1980;58:53–57.

    PubMed  CAS  Google Scholar 

  267. Monnier VM, Vishwanath V, Frank KE, et al. Relation between complications of type 1 diabetes mellitus and collagen-linked fluorescence. N Engl J Med 1986;314:403–408.

    Article  PubMed  CAS  Google Scholar 

  268. Kimoto E, Shoji T, Shinohara K, et al. Preferential stiffening of central over peripheral arteries in type 2 diabetes. Diabetes 2003;52:448–452.

    Article  PubMed  CAS  Google Scholar 

  269. Lacy PS, O’Brien DG, Stanley AG, et al. Increased pulse wave velocity is not associated with elevated augmentation index in patients with diabetes. J Hypertens 2004;22:1937–1944.

    Article  PubMed  CAS  Google Scholar 

  270. Kass DA. Age-related changes in ventriculo-arterial coupling: pathophysiologic implications. Heart Failure Revs 2002;7:51–62.

    Article  Google Scholar 

  271. Kass DA, Shapiro EP, Kawaguchi M, et al. Improved arterial compliance by a novel advanced glycation end-product crosslink breaker. Circulation 2001;104:1464–1470.

    Article  PubMed  CAS  Google Scholar 

  272. Ross J. Afterload mismatch and preload reserve: a conceptual framework for the analysis of ventricular function. Prog Cardiovasc Dis 1976;18:255–264.

    Article  PubMed  Google Scholar 

  273. Weber KT, Janicki JS, Hunter WC, et al. The contractile behavior of the heart and its functional coupling to the circulation. Prog Cardiovasc Dis 1982;24:375–400.

    Article  PubMed  CAS  Google Scholar 

  274. Pepine CJ, Nichols WW, Conti CR. Aortic input impedance in heart failure. Circulation 1978;58:460–465.

    PubMed  CAS  Google Scholar 

  275. Laskey WK, Kussmaul WG, Martin JL, et al. Characteristics of vascular hydraulic load in patients with heart failure. Circulation 1985;72:61–67.

    PubMed  CAS  Google Scholar 

  276. Merillon JP, Fontenier G, Leralluit JF, et al. Aortic input impedance in heart failure: comparison with normal subjects and its changes during vasodilator therapy. Eur Heart J 1984;5:447–455.

    PubMed  CAS  Google Scholar 

  277. Lage SG, Kopel L, Monachini MC, et al. Carotid arterial compliance in patients with congestive heart failure secondary to idiopathic dilated cardiomyopathy. Am J Cardiol 1994;74:691–695.

    Article  PubMed  CAS  Google Scholar 

  278. Giannattasio C, Failla M, Stella ML, et al. Alterations of radial artery compliance in patients with congestive heart failure. Am J Cardiol 1995;76:381–385.

    Article  PubMed  CAS  Google Scholar 

  279. Arnold JMO, Marchiori GE, Emrie JR, et al. Large artery function in patients with chronic heart failure. Circulation 1991;84:2418–2425.

    PubMed  CAS  Google Scholar 

  280. Kaiser DR, Mullen K, Bank AJ. Brachial artery elastic mechanics in patients with heart failure. Hypertension 2001;38:1440–1445.

    Article  PubMed  CAS  Google Scholar 

  281. Joannides R, Bizet-Nafeh C, Costentin A, et al. Chronic ACE inhibition enhances the endothelial control of arterial mechanics and flow-dependent vasodilation in heart failure. Hypertension 2001;38:1446–1450.

    Article  PubMed  CAS  Google Scholar 

  282. Ramsey MW, Goodfellow J, Jones CJH, et al. Endothelial control of arterial distensibility is impaired in chronic heart failure. Circulation 1995;92:3212–3219.

    PubMed  CAS  Google Scholar 

  283. Nakamura M, Sugawara S, Arakawa N, et al. Reduced vascular compliance is associated with impaired endothelium-dependent dilation in the brachial artery of patients with congestive heart failure. J Card Failure 2004;10(1):36–42.

    Article  CAS  Google Scholar 

  284. Finkelstein SM, Cohn JN, Collins VR, et al. Vascular hemodynamic impedance in congestive heart failure. Am J Cardiol 1985;55:423–427.

    Article  PubMed  CAS  Google Scholar 

  285. Eaton GM, Cody RJ, Binkley PF. Increased aortic impedance precedes peripheral vasoconstriction at the early stage of ventricular failure in the paced canine model. Circulation 1993;88:2714–2721.

    PubMed  CAS  Google Scholar 

  286. Gaballa MA, Raya RE, Goldman S. Large artery remodeling after myocardial infarction. Am J Physiol 1995;268:H2092–H2103.

    PubMed  CAS  Google Scholar 

  287. Pepine CJ, Nichols WW, Curry Jr RC, Conte CR. Aortic input impedance during nitroprusside infusion. J Clin Invest 1979;64:643–654.

    PubMed  CAS  Google Scholar 

  288. Binkley PF, Van Fossen DB, Nunziata E, et al. Influence of positive inotropic therapy on pulsatile hydraulic load and ventricular-vascular coupling in congestive heart failure. J Am Coll Cardiol 1990;15:1127–1135.

    Article  PubMed  CAS  Google Scholar 

  289. Yin FCP, Guzman PA, Brin KP, et al. Effect of nitroprusside on hydraulic vascular loads on the right and left ventricle of patients with heart failure. Circulation 1983;67:1330–1339.

    PubMed  CAS  Google Scholar 

  290. Laskey WK, Kussmaul WG. Arterial wave reflection in heart failure. Circulation 1987;75:711–722.

    PubMed  CAS  Google Scholar 

  291. Lage SG, Kopel L, Medeiros CJ, Carvalho RT, Creager MA. Angiotensin II contributes to arterial compliance in congestive heart failure. Am J Physiol Heart Circ Physiol 2002;283:H1424–H1429.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

McVeigh, G.E., Bank, A.J., Cohn, J.N. (2007). Arterial Compliance. In: Willerson, J.T., Wellens, H.J.J., Cohn, J.N., Holmes, D.R. (eds) Cardiovascular Medicine. Springer, London. https://doi.org/10.1007/978-1-84628-715-2_88

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-715-2_88

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-188-4

  • Online ISBN: 978-1-84628-715-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics