Skip to main content
Log in

Arterial wave propagation phenomena, ventricular work, and power dissipation

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The effects of wave propagation phenomena, namely global reflection coefficient (ΓG[ω]) and pulse wave velocity (c ph), are studied in a model of the coupled left ventricle/arterial system. The left ventricle consists of a time-varying elastance, while the arterial system is modeled as a single, uniform, elastic tube terminating in a complex load. Manipulation of model parameters allowed for the precise control of (ΓG[ω]) andc phindependent of each other, peripheral resistance, and characteristic impedance. Reduction of ΓG(ω) andc ph were achieved through increases in load compliance and tube compliance, respectively. The equations describing the system were solved for left ventricular and aortic pressures and aortic flow. From these, stroke volume (SV), left ventricular stroke work (SW), and steady\((\dot W_s )\), oscillatory\((\dot W_o )\), and total power dissipation\((\dot W_t )\) in the arterial system were calculated. An index of arterial system efficiency was the ratio\(\dot W_o /\dot W_t (\% \dot W_o )\), with lower values indicating higher efficiency. Reduction of ΓG(ω) yielded initial increases in\(\dot W_s \), while\(\dot W_o \) increased for the entire range of ΓG(ω), resulting in increased\(\% \dot W_o \). This reduced efficiency is imposed on the ventricle, resulting in increasedSW without increasedSV. On the other hand, decreasedc ph yielded in a steady increase in\(\dot W_s \) and a biphasic response in\(\dot W_o \), resulting in reduced\(\% \dot W_o \) for most of the range of reducedc ph. These results suggest that differential effects on arterial system efficiency can result from reductions of ΓG(ω) andc ph. In terms of compliance, changes in arterial compliance can have different effects on efficiency, depending on where the compliance change takes place. Reasons for these results are suggested, and the role of distributed compliances is raised as a new problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berger, D. S., J. K-J. Li, and A. Noordergraaf. Differential effects of wave reflections and peripheral resistance on aortic blood pressure: a model based study.Am. J. Physiol. 266 (Heart Circ. Physiol. 35):H1626-H1642, 1994.

    PubMed  CAS  Google Scholar 

  2. Berger, D. S., J. K-J. Li, W. K. Laskey, and A. Noordergraaf. Repeated reflection of waves in the systemic arterial system.Am. J. Physiol. 264 (Heart Circ. Physiol. 33): H269-H281, 1993.

    PubMed  CAS  Google Scholar 

  3. Burattini, R., and K. B. Campbell. Effective distributed compliance of the canine descending aorta estimated by modified T-tube model.Am. J. Physiol. 264 (Heart Circ. Physiol. 33):H1977-H1987, 1993.

    PubMed  CAS  Google Scholar 

  4. Campbell, K. B., L. C. Lee, H. F. Frasch, and A. Noordergraaf. Pulse reflection sites and effective length of the arterial system.Am. J. Physiol. 256 (Heart Circ. Physiol. 25):H1684-H1689, 1989.

    PubMed  CAS  Google Scholar 

  5. Cholley, B. P., S. G. Shroff, J. Sandelski, C. Korcarz, B. A. Balasia, S. Jain, D. S. Berger, M. B. Murphy, R. H. Marcus, and R. M. Lang. Differential effects of chronic oral antihypertensive therapies on systemic arterial circulation and ventricular energetics in African American patients.Circulation 91:1052–1062, 1995.

    PubMed  CAS  Google Scholar 

  6. Cox, R. H. Determination of systemic hydraulic power in unanesthetized dogs.Am. J. Physiol. 226:579–587, 1974.

    PubMed  CAS  Google Scholar 

  7. Gibbs, C. L. Cardiac energetics.Physiol. Rev. 58:175–254, 1978.

    Google Scholar 

  8. Kelly, R. P., R. Tunin, and D. A. Kass. Effect of reduced aortic compliance on cardiac efficiency and contractile function ofin situ canine left ventricle.Circ. Res. 71:490–502, 1992.

    PubMed  CAS  Google Scholar 

  9. Laskey, W. K., H. G. Parker, V. A. Ferrari, W. G. Kussmaul, and A. Noordergraaf. Estimation of total arterial compliance in man.J. Appl. Physiol. 69:112–119, 1990.

    PubMed  CAS  Google Scholar 

  10. Merillon, J. P., G. J. Fontenier, J. F. Lerallut, M. Y. Jaffrin, G. A. Motte, C. P. Genain, and R. R. Gourgon. Aortic input impedance in normal man and arterial hypertension: its modification during changes in aortic pressure.Cardiovasc. Res. 16:646–656, 1982.

    PubMed  CAS  Google Scholar 

  11. Milnor, W. R. Cardiac Dynamics. In:Hemodynamics. Baltimore: Williams & Wilkins, pp. 260–293, 1989.

    Google Scholar 

  12. Milnor, W. R., C. R. Conti, K. B. Lewis, and M. F. O'Rourke. Pulmonary arterial pulse wave velocity and impedance in man.Circ. Res. 25:637–649, 1969.

    PubMed  CAS  Google Scholar 

  13. Milnor, W. R., D. H. Bergel, and J. D. Bargainer. Hydraulic power associated with pulmonary blood flow and its relation to heart rate.Circ. Res. 19:467–480, 1966.

    PubMed  CAS  Google Scholar 

  14. Nichols, W. W., C. R. Conti, W. E. Walker, and W. R. Milnor. Input impedance of the systemic circulation in man.Circ. Res. 40:451–458, 1977.

    PubMed  CAS  Google Scholar 

  15. O'Rourke, M. F. Steady and pulsatile energy losses in the systemic circulation under normal conditions and in simulated arterial disease.Cardiovasc. Res. 1:313–326, 1967.

    PubMed  Google Scholar 

  16. Randall, O. S., G. C. Van den Bos, and N. Westerhof. Systemic compliance: does it play a role in the genesis of essential hypertension?Cardiovasc. Res. 18:455–462, 1984.

    PubMed  CAS  Google Scholar 

  17. Shroff, S. G., D. S. Berger, R. M. Lang, R. H. Marcus, C. Korarcz, and D. E. Miller. Physiological relevance of T-tube model parameters: emphasis on arterial system compliance.Am. J. Physiol. 269 (Heart Circ. Physiol. 38): H365-H374, 1995.

    PubMed  CAS  Google Scholar 

  18. Ting, C. T., K. P. Brin, S. J. Lin, S. P. Wang, M. S. Chang, B. N. Chiang, and F. C. P. Yin. Arterial hemodynamics in human hypertension.J. Clin. Invest. 78:1462–1471, 1986.

    PubMed  CAS  Google Scholar 

  19. Urschel, C. W., J. W. Covell, E. H. Sonnenblick, J. Ross, Jr., and E. Braunwald. Effects of decreased aortic compliance on performance of the left ventricle.Am. J. Physiol. 214:298–304, 1968.

    PubMed  CAS  Google Scholar 

  20. Westerhof, N., P. Sipkema, G. C. Van den Bos, and G. Elzinga. Forward and backward waves in the arterial system.Cardiovasc. Res. 6:648–656, 1972.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, D.S., Li, J.KJ. & Noordergraaf, A. Arterial wave propagation phenomena, ventricular work, and power dissipation. Ann Biomed Eng 23, 804–811 (1995). https://doi.org/10.1007/BF02584479

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584479

Keywords

Navigation