Skip to main content

Isolation and Culture of Neonatal Mouse Calvarial Osteoblasts

  • Protocol
Skeletal Development and Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1130))

Abstract

This chapter describes the isolation and culture of neonatal mouse calvarial osteoblasts. This primary cell population is obtained by sequential enzymatic digestion of the calvarial bone matrix and is capable of differentiating in vitro into mature osteoblasts that deposit a collagen extracellular matrix and form mineralized bone nodules. Maturation of the cultures can be monitored by gene expression analyses and staining for the presence of alkaline phosphatase or matrix mineralization. This culture system, therefore, provides a powerful model to test how various experimental conditions, such as the manipulation of gene expression, may affect osteoblast maturation and/or function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jensen ED, Gopalakrishnan R, Westendorf JJ (2010) Regulation of gene expression in osteoblasts. Biofactors 36(1):25–32

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Komori T (2011) Signaling networks in RUNX2-dependent bone development. J Cell Biochem 112(3):750–755

    Article  CAS  PubMed  Google Scholar 

  3. Long F (2012) Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol 13(1):27–38

    Article  CAS  Google Scholar 

  4. Aronow MA, Gerstenfeld LC, Owen TA, Tassinari MS, Stein GS, Lian JB (1990) Factors that promote progressive development of the osteoblast phenotype in cultured fetal rat calvaria cells. J Cell Physiol 143(2):213–221

    Article  CAS  PubMed  Google Scholar 

  5. Malaval L, Liu F, Roche P, Aubin JE (1999) Kinetics of osteoprogenitor proliferation and osteoblast differentiation in vitro. J Cell Biochem 74(4):616–627

    Article  CAS  PubMed  Google Scholar 

  6. Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassinari MS, Kennedy MB, Pockwinse S, Lian JB, Stein GS (1990) Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol 143(3):420–430

    Article  CAS  PubMed  Google Scholar 

  7. Whyte MP (2010) Physiological role of alkaline phosphatase explored in hypophosphatasia. Ann N Y Acad Sci 1192:190–200

    Article  CAS  PubMed  Google Scholar 

  8. Boskey AL, Maresca M, Ullrich W, Doty SB, Butler WT, Prince CW (1993) Osteopontin-hydroxyapatite interactions in vitro: inhibition of hydroxyapatite formation and growth in a gelatin-gel. Bone Miner 22(2):147–159

    Article  CAS  PubMed  Google Scholar 

  9. Boskey AL, Spevak L, Paschalis E, Doty SB, McKee MD (2002) Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Calcif Tissue Int 71(2):145–154

    Article  CAS  PubMed  Google Scholar 

  10. Hunter GK, Goldberg HA (1993) Nucleation of hydroxyapatite by bone sialoprotein. Proc Natl Acad Sci U S A 90(18):8562–8565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hauschka PV, Lian JB, Cole DE, Gundberg CM (1989) Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev 69(3):990–1047

    CAS  PubMed  Google Scholar 

  12. Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, Ducy P, Karsenty G (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142(2):296–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fulzele K, Riddle RC, DiGirolamo DJ, Cao X, Wan C, Chen D, Faugere MC, Aja S, Hussain MA, Bruning JC, Clemens TL (2010) Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142(2):309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Peck WA, Birge SJ Jr, Fedak SA (1964) Bone cells: biochemical and biological studies after enzymatic isolation. Science 146(3650):1476–1477

    Article  CAS  PubMed  Google Scholar 

  15. Wong G, Cohn DV (1974) Separation of parathyroid hormone and calcitonin-sensitive cells from non-responsive bone cells. Nature 252(5485):713–715

    Article  CAS  PubMed  Google Scholar 

  16. McCarthy TL, Centrella M, Canalis E (1988) Further biochemical and molecular characterization of primary rat parietal bone cell cultures. J Bone Miner Res 3(4):401–408

    Article  CAS  PubMed  Google Scholar 

  17. Wong GL, Cohn DV (1975) Target cells in bone for parathormone and calcitonin are different: enrichment for each cell type by sequential digestion of mouse calvaria and selective adhesion to polymeric surfaces. Proc Natl Acad Sci U S A 72(8):3167–3171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bellows CG, Aubin JE, Heersche JN, Antosz ME (1986) Mineralized bone nodules formed in vitro from enzymatically released rat calvaria cell populations. Calcif Tissue Int 38(3):143–154

    Article  CAS  PubMed  Google Scholar 

  19. Bhargava U, Bar-Lev M, Bellows CG, Aubin JE (1988) Ultrastructural analysis of bone nodules formed in vitro by isolated fetal rat calvaria cells. Bone 9(3):155–163

    Article  CAS  PubMed  Google Scholar 

  20. Nefussi JR, Boy-Lefevre ML, Boulekbache H, Forest N (1985) Mineralization in vitro of matrix formed by osteoblasts isolated by collagenase digestion. Differentiation 29(2):160–168

    Article  CAS  PubMed  Google Scholar 

  21. Sudo H, Kodama HA, Amagai Y, Yamamoto S, Kasai S (1983) In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 96(1):191–198

    Article  CAS  PubMed  Google Scholar 

  22. Beck GR Jr, Zerler B, Moran E (2001) Gene array analysis of osteoblast differentiation. Cell Growth Differ 12(2):61–83

    CAS  PubMed  Google Scholar 

  23. Garcia T, Roman-Roman S, Jackson A, Theilhaber J, Connolly T, Spinella-Jaegle S, Kawai S, Courtois B, Bushnell S, Auberval M, Call K, Baron R (2002) Behavior of osteoblast, adipocyte, and myoblast markers in genome-wide expression analysis of mouse calvaria primary osteoblasts in vitro. Bone 31(1):205–211

    Article  CAS  PubMed  Google Scholar 

  24. Nishikawa K, Nakashima T, Takeda S, Isogai M, Hamada M, Kimura A, Kodama T, Yamaguchi A, Owen MJ, Takahashi S, Takayanagi H (2010) Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation. J Clin Invest 120(10):3455–3465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roman-Roman S, Garcia T, Jackson A, Theilhaber J, Rawadi G, Connolly T, Spinella-Jaegle S, Kawai S, Courtois B, Bushnell S, Auberval M, Call K, Baron R (2003) Identification of genes regulated during osteoblastic differentiation by genome-wide expression analysis of mouse calvaria primary osteoblasts in vitro. Bone 32(5):474–482

    Article  CAS  PubMed  Google Scholar 

  26. Seth A, Lee BK, Qi S, Vary CP (2000) Coordinate expression of novel genes during osteoblast differentiation. J Bone Miner Res 15(9):1683–1696

    Article  CAS  PubMed  Google Scholar 

  27. Franceschi RT, Iyer BS (1992) Relationship between collagen synthesis and expression of the osteoblast phenotype in MC3T3-E1 cells. J Bone Miner Res 7(2):235–246

    Article  CAS  PubMed  Google Scholar 

  28. Peterkofsky B (1991) Ascorbate requirement for hydroxylation and secretion of procollagen: relationship to inhibition of collagen synthesis in scurvy. Am J Clin Nutr 54(6 Suppl):1135S–1140S

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Yongchun Zhang, Donna Hoak, and Tzong-jen Sheu for technical assistance. This work was supported by Public Health Service Grants RO1 AR053717, P50 AR054041, and P30 AR061307.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jonason, J.H., O’Keefe, R.J. (2014). Isolation and Culture of Neonatal Mouse Calvarial Osteoblasts. In: Hilton, M. (eds) Skeletal Development and Repair. Methods in Molecular Biology, vol 1130. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-989-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-989-5_22

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-988-8

  • Online ISBN: 978-1-62703-989-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics