Skip to main content

The Expanding Universe of Mass Analyzer Configurations for Biological Analysis

  • Protocol
  • First Online:
Plant Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1072))

Abstract

Mass spectrometry (MS) is an analytical technique that measures the mass-to-charge ratio of electrically charged gas-phase particles. All mass spectrometers combine ion formation, mass analysis, and ion detection. Although mass analyzers can be regarded as sophisticated devices that manipulate ions in space and time, the rich diversity of possible ways to combine ion separation, focusing, and detection in dynamic mass spectrometers accounts for the large number of instrument designs. A historical perspective of the progress in mass spectrometry that since 1965 until today have contributed to position this technique as an indispensable tool for biological research has been recently addressed by a privileged witness of this golden age of MS (Gelpí J. Mass Spectrom 43:419–435, 2008; Gelpí J. Mass Spectrom 44:1137–1161, 2008). The aim of this chapter is to highlight the view that the operational principles of mass spectrometry can be understood by a simple mathematical language, and that an understanding of the basic concepts of mass spectrometry is necessary to take the most out of this versatile technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gelpí E (2008) From large analogical instruments to small digital black boxes: 40 years of progress in mass spectrometry and its role in proteomics. Part I 1965-1984. J Mass Spectrom 43:419–435

    Article  PubMed  Google Scholar 

  2. Gelpí E (2008) From large analogical instruments to small digital black boxes: 40 years of progress in mass spectrometry and its role in proteomics. Part II 1985-2000. J Mass Spectrom 44:1137–1161

    Article  Google Scholar 

  3. Thomson JJ (1897) Cathode rays. Philos Mag 44:293 (consult also http://www-outreach.phy.cam.ac.uk/camphy/electron/electron_index.htm)

    Google Scholar 

  4. Wien K (1999) 100 years of ion beams: Willy Wien’s canal rays. Braz J Phys 29:401–414

    Article  CAS  Google Scholar 

  5. Falconer I (2001) Corpuscles to electrons. In: Buchwald J, Warwick A (eds) Histories of the electron. MIT, Cambridge, MA, pp 77–100

    Google Scholar 

  6. Dempster AJ (1918) A new method of positive ray analysis. Phys Rev 11:316–325

    Article  CAS  Google Scholar 

  7. Aston FW (1919) A positive ray spectrograph. Philos Mag Ser 6(38):707–714

    Article  Google Scholar 

  8. Downard KM (2007) Francis William Aston—the man behind the mass spectrograph. Eur J Mass Spectrom 13:177–190

    Article  CAS  Google Scholar 

  9. Paul W, Steinwedel H (1953) Ein neues Massenspektrometer ohne Magnetfeld. Zeitsch Naturforsch A8:448–450

    Google Scholar 

  10. Paul W (1990) Electromagnetic traps for charged and neutral particles. Rev Mod Phys 62:531–540

    Article  CAS  Google Scholar 

  11. Dehmelt HG (1989) Experiments with an isolated subatomic particle at rest. Nobel lecture (http://www.nobelprize.org/nobel_prizes/physics/laureates/1989/dehmelt-lecture.pdf)

  12. Miller PE, Denton MB (1986) The quadrupole mass filter: basic operating concepts. J Chem Ed 63:617–622

    Article  CAS  Google Scholar 

  13. Dawson PH (1986) Quadrupole mass analyzers: performance, design and some recent applications. Mass Spectrom Rev 5:1–37

    Article  CAS  Google Scholar 

  14. Cooks RG, Glish GL, McLuckey SA et al (1991) Ion trap mass spectrometry. Chem Eng News 69:26–30

    Article  CAS  Google Scholar 

  15. Jonscher KR, Yates JR (1997) The quadrupole ion trap mass spectrometer—a small solution to a big challenge. Anal Biochem 244:1–15

    Article  CAS  PubMed  Google Scholar 

  16. Yost RA, Enke CG (1978) Selected ion fragmentation with a tandem quadrupole mass spectrometer. J Am Chem Soc 100:2274–2275

    Article  CAS  Google Scholar 

  17. Stephens WE (1946) A pulsed mass spectrometer with time dispersion. Phys Rev 69:691

    CAS  Google Scholar 

  18. Campana JE (1987) Time-of-flight mass spectrometry: a historical overview. Instrum Sci Technol 16:1–14

    Article  CAS  Google Scholar 

  19. Comisarow MB, Marshall AG (1996) The early development of Fourier transform ion cyclotron resonance (FT-ICR) spectroscopy. J Mass Spectrom 31:581–585

    Article  CAS  PubMed  Google Scholar 

  20. Marshall AG, Hendrickson CL, Jackson GS (1998) Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 17:1–35

    Article  CAS  PubMed  Google Scholar 

  21. Lawrence E (1951) The evolution of the cyclotron. Nobel lecture: (http://www.nobelprize.org/nobel_prizes/physics/laureates/1939/lawrence-lecture.html)

  22. Amster IJ (1996) Fourier transform mass spectrometry. J Mass Spectrom 31:1325–1337

    Article  CAS  Google Scholar 

  23. Marshall AG (2000) Milestones in Fourier transform ion cyclotron resonance mass spectrometry technique development. Int J Mass Spectrom 200:331–356

    Article  CAS  Google Scholar 

  24. Marshall AG, Hendrickson CL (2002) FTICR detection: principles and experimental configurations. Int J Mass Spectrom 215:59–75

    Article  CAS  Google Scholar 

  25. Fellgett P (1958) A propos de la theorie du spectrometre interferentielk multiplex. J Phys Radium 19:187–191

    Article  CAS  Google Scholar 

  26. Vartanian VH, Laude DA (1995) Optimization of ion cell for FT-ICR MS. Int J Mass Spectrom Ion Proc 141:189–200

    Article  CAS  Google Scholar 

  27. Marshall AG, Hendrickson CL (2001) Charge reduction lowers mass resolving power for isotopically resolved electrospray ionization Fourier transform ion cyclotron resonance mass spectra. Rapid Commun Mass Spectrom 15:232–235

    Article  CAS  Google Scholar 

  28. Marshall AG (1979) Theoretical signal-to-noise ratio and mass resolution in Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 51:1710–1714

    Article  CAS  Google Scholar 

  29. Marshall AG, Comisarow MB, Parisod G (1979) Relaxation and spectral line shape in Fourier transform ion resonance spectroscopy. J Chem Phys 71:4434–4444

    Google Scholar 

  30. Macfarlane RD, Torgerson DF (1976) Californium-252 plasma desorption mass spectroscopy. Science 191:920–925

    Article  CAS  PubMed  Google Scholar 

  31. Barber M, Bordoli RS, Sedgewick RD et al (1981) Fast atom bombardment of solids as an ion source in mass spectrometry. Nature 293:270–275

    Article  CAS  Google Scholar 

  32. Morris HR, Panico M, Barber M et al (1981) Fast atom bombardment: a new mass spectrometric method for peptide sequence analysis. Biochem Biophys Res Commun 101:623–631

    Article  CAS  PubMed  Google Scholar 

  33. Karas M, Bachmann D, Hillenkamp F (1985) Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal Chem 57:2935–2939

    Article  CAS  Google Scholar 

  34. Fenn JB, Mann M, Meng CK et al (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  CAS  PubMed  Google Scholar 

  35. Fenn JB (2003) Electrospray wing for molecular elephants. Angew Chem Int Ed Engl 42:3871–3894

    Article  CAS  PubMed  Google Scholar 

  36. Tanaka K, Waki H, Ido Y et al (1988) Protein and polymer analyses up to m/z 100,000 by laser ionization time-of flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153

    Article  CAS  Google Scholar 

  37. Tanaka K (2002) The origin of macromolecule ionization by laser irradiation. Nobel lecture (http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2002/tanaka-lecture.pdf).

  38. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301

    Article  CAS  PubMed  Google Scholar 

  39. Emmett MR, Caprioli RM (1994) Micro-electrospray mass spectrometry: ultra-high-sensitivity analysis of peptides and proteins. J Am Soc Mass Spectrom 5:605–613

    Article  CAS  Google Scholar 

  40. Wilm MS, Mann M (1994) Electrospray and Taylor-Cone theory, Dole’s beam of macromolecules at last? Int J Mass Spectrom Ion Proc 136:167–180

    Article  CAS  Google Scholar 

  41. Wilm M, Mann M (1996) Analytical properties of the nanoelectrospray ion source. Anal Chem 68:1–8

    Article  CAS  PubMed  Google Scholar 

  42. Smith RD, Bruce JE, Wu Q et al (1997) New mass spectrometric methods for the study of noncovalent associations of biopolymers. Chem Soc Rev 26:191–202

    Article  CAS  Google Scholar 

  43. Dole M, Mack LL, Hines RL et al (1968) Molecular beams of macroions. J Chem Phys 49:2240–2249

    Article  CAS  Google Scholar 

  44. Iribarne J-V, Thomson B-A (1976) On the evaporation of small ions from charged droplets. J Chem Phys 64:2287–2294

    Article  CAS  Google Scholar 

  45. Nguyen S, Fenn JB (2007) Gas-phase ions of solute species from charged droplets of solutions. Proc Natl Acad Sci USA 104: 1111–1117

    Article  CAS  PubMed  Google Scholar 

  46. Hogan CJ, Carroll JA, Rohrs HW et al (2009) Combined charged residue-field emission model of macromolecular electrospray ionization. Anal Chem 81:369–377

    Article  CAS  PubMed  Google Scholar 

  47. Knochenmuss R (2006) Ion formation mechanism in UV MALDI. Analyst 131:966–986

    Article  CAS  PubMed  Google Scholar 

  48. Chang WC, Huang LCL, Wang Y-S et al (2007) Matrix-assisted laser desorption/ionization (MALDI) mechanism revisited. Anal Chim Acta 582:1–9

    Article  CAS  PubMed  Google Scholar 

  49. Hillenkamp F, Peter-Katalinic J (2007) MALDI MS. A practical guide to instrumentation, methods and applications. Wiley-VCH, Weinheim

    Google Scholar 

  50. Laiko VV, Baldwin MA, Burlingame AL (2000) Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 72:652–657

    Article  CAS  PubMed  Google Scholar 

  51. Guilhaus M, Selby D, Mlynski V (2000) Orthogonal acceleration time-of-flight mass spectrometry. Mass Spectrom Rev 19:65–107

    Article  CAS  PubMed  Google Scholar 

  52. Chernushevich IV, Loboda AV, Thomson BA (2001) An introduction to quadupole/time-of-flight mass spectrometry. J Mass Spectrom 36:849–865

    Article  CAS  PubMed  Google Scholar 

  53. Gillet LC, Navarro P, Tate S et al (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11:O111.016717. doi:10.1074/mcp.O111.016717

    Article  PubMed  Google Scholar 

  54. Mamyrin BA (2001) Time-of-flight mass spectrometry (concepts, achievements, and prospects). Int J Mass Spectrom 3:251–266

    Google Scholar 

  55. Cornish TJ, Cotter RJ (1993) Tandem time-of-flight mass spectrometer. Anal Chem 15:1043–1047

    Article  Google Scholar 

  56. Brown RS, Lennon JJ (1995) Mass resolution improvement by incorporation of pulsed ion extraction in a matrix-assisted laser desorption/ionization linear time-of-flight mass spectrometer. Anal Chem 67:1998–2003

    Article  CAS  PubMed  Google Scholar 

  57. Clauser KR, Baker P, Burlingame AL (1999) Role of accurate mass measurement (+/−10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal Chem 71:2871–2882

    Article  CAS  PubMed  Google Scholar 

  58. Hager JW (2002) A new linear ion trap MS. Rapid Commun Mass Spectrom 16:512–526

    Article  CAS  Google Scholar 

  59. Le Blanc JC, Hager JW, Ilisiu AM et al (2003) Unique scanning capabilities of a new hybrid linear ion trap mass spectrometer (Q TRAP) used for high sensitivity proteomics applications. Proteomics 3:859–869

    Article  PubMed  Google Scholar 

  60. Douglas D, Frank A, Mao D (2005) Linear ion traps in MS. Mass Spectrom Rev 24:1–29

    Article  CAS  PubMed  Google Scholar 

  61. Douglas DJ (1993) Multipole inlet systems for ion traps. US Patent 5,179,278

    Google Scholar 

  62. Syka JE, Marto JA, Bai DL et al (2004) Novel linear quadrupole ion trap/FT mass spectrometer: performance characterization and use in the comparative analysis of histone H3 post-translational modifications. J Proteome Res 3:621–626

    Article  CAS  PubMed  Google Scholar 

  63. Makarov A (2000) Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem 72:1156–1162

    Article  CAS  PubMed  Google Scholar 

  64. Kingdon KH (1923) A method for the neutralization of electron space charge by positive ionization at very low gas pressures. Phys Rev 21:408–418

    Article  CAS  Google Scholar 

  65. Knight RD (1981) Storage of ions from laser-produced plasmas. Appl Phys Lett 38:221–223

    Article  CAS  Google Scholar 

  66. Scigelova M, Hornshaw M, Giannakopoulos A et al (2011) Fourier transform mass spectrometry. Mol Cell Proteomics 10(7). doi 10.1074/mcp.M11.009431-1. http://www.mcponline.org

  67. Makarov A, Denisov E, Lange O (2009) Performance evaluation of a high-field Orbitrap mass analyzer. J Mass Spectrom 20:1391–1396

    Article  CAS  Google Scholar 

  68. Makarov A, Denisov E, Kholomeev A et al (2006) Performance evaluation of a hybrid linear ion trap/Orbitrap mass spectrometer. Anal Chem 78:2113–2120

    Article  CAS  PubMed  Google Scholar 

  69. Makarov A, Horning S, Mann M (2007) Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods 4:709–712

    Article  PubMed  Google Scholar 

  70. Syka JE, Coon JJ, Schroeder MJ et al (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci USA 101:9528–9533

    Article  CAS  PubMed  Google Scholar 

  71. Olsen JV, Macek B, Lange O et al (2006) The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta 1764:1811–1822

    Article  Google Scholar 

  72. Strupat K, Kovtoun V, Bui H et al (2009) MALDI produced ions inspected with a linear ion trap-Orbitrap hybrid mass analyzer. J Am Soc Mass Spectrom 20:1451–1463

    Article  CAS  Google Scholar 

  73. Geiger T, Cox J, Mann M (2010) Proteomics on an Orbitrap benchtop mass spectrometer using all—ion fragmentation. Mol Cell Proteomics 9:2252–2261

    Article  CAS  PubMed  Google Scholar 

  74. Gallien S, Duriez E, Crone C et al (2012) Targeted proteomic quantification on quadrupole—orbitrap mass spectrometer. Mol Cell Proteomics 11:1709–1723

    Google Scholar 

  75. Olsen JV, Schwartz JC, Griep-Raming J et al (2009) A new instrument for high-speed proteomics: Orbitrap mass analyzer interfaced to a dual linear trap. Mol Cell Proteomics 8:2759–2769

    Article  CAS  PubMed  Google Scholar 

  76. Albritton DL, Miller TM, Martin DW et al (1968) Mobilities of mass-identified H3 + and H+ ions in hydrogen. Phys Rev 171:94–102

    Article  CAS  Google Scholar 

  77. Shvartsburg AA, Smith RD (2008) Fundamentals of traveling wave ion mobility spectrometry. Anal Chem 80:9689–9699

    Article  CAS  PubMed  Google Scholar 

  78. Kanu AB, Dwivedi P, Tam M et al (2008) Ion mobility-mass spectrometry. J Mass Spectrom 43:1–22

    Article  CAS  PubMed  Google Scholar 

  79. McDaniel EW, Martin DW, Barnes WS (1962) Drift tube-mass spectrometer for studies of low-energy ion-molecule reactions. Rev Sci Instrum 33:2–7

    Article  CAS  Google Scholar 

  80. Revercomb HE, Mason EA (1975) Theory of plasma chromatography/gaseous electrophoresis—a review. Anal Chem 47:970–983

    Article  CAS  Google Scholar 

  81. Pringle SD, Giles K, Wildgoose JL et al (2007) An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int J Mass Spectrom 261:1–12

    Article  CAS  Google Scholar 

  82. Giles K, Pringle SD, Worthington KR et al (2004) Applications of a traveling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom 18:2401–2414

    Article  CAS  PubMed  Google Scholar 

  83. Schneider BB, Covey TR, Coy SL et al (2010) Chemical effects in the separation process of a differential mobility/mass spectrometer system. Anal Chem 82:1867–1880

    Article  CAS  PubMed  Google Scholar 

  84. Krylov EV, Coy SL, Vandermey J et al (2010) Selection and generation of waveforms for differential mobility spectrometry. Rev Sci Instrum 81:024101

    Article  PubMed  Google Scholar 

  85. http://www.absciex.com/Documents/Downloads/Literature/SelexION-Forensic-Tech-Note-3460111-01.pdf

  86. Kiss A, Heeren RMA (2011) Size, weight and position: ion mobility spectrometry and imaging MS combined. Anal Bioanal Chem 399:2623–2634

    Article  CAS  PubMed  Google Scholar 

  87. McLean JA, Ruotolo BT, Gillig KJ et al (2005) Ion mobility mass spectrometry: a new paradigm for proteomics. Int J Mass Spectrom 240:301–315

    Article  CAS  Google Scholar 

  88. Zinnel NF, Pai P-J, Russell DH (2012) Ion mobility-mass spectrometry (IM-MS) for top-down proteomics: increased dynamic range affords increased sequence coverage. Anal Chem 84:3390–3397

    Article  CAS  PubMed  Google Scholar 

  89. Han X, Aslanian A, Yates JR III (2008) Mass spectrometry for proteomics. Curr Opin Chem Biol 12:483–490

    Article  CAS  PubMed  Google Scholar 

  90. Hart-Smith G, Blanksby SJ (2012) Mass analysis. In: Barner-Kowollik C, Gruendling T, Falkenhagen J, Weidner S (eds) Mass spectrometry in polymer chemistry, 1st edn. Wiley-VCH, Verlag GmbH & Co., Weinheim (Germany), pp 5–32

    Google Scholar 

  91. Brenton AG, Godfrey AR (2010) Accurate mass measurement: terminology and treatment of data. J Am Soc Mass Spectrom 21:1821–1835

    CAS  PubMed  Google Scholar 

  92. Picotti P, Aebersold R (2012) Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 9:555–566

    Article  CAS  PubMed  Google Scholar 

  93. Carapito C, Aebersold R (Guest editors) (2012) Targeted proteomics. Proteomics 8:1073–1300

    Google Scholar 

  94. Brunnée C (1987) The ideal mass analyzer: fact or fiction? Int J Mass Spectrom 76:125–237

    Google Scholar 

  95. McLafferty FW, Turecek F (1993) Interpretation of mass spectra, 4th edn. University Science Book, Mill Valley, CA. ISBN 978-0-935702-25-5

    Google Scholar 

  96. McCloskey JA (1990) Mass spectrometry. Methods Enzymol 193:3–960

    Article  Google Scholar 

  97. Smith RM (2004) Understanding mass spectra: a basic approach, 2nd edn. Wiley, Hoboken, NJ. ISBN 0-471-42949-X

    Book  Google Scholar 

  98. Gross JH (2004) Mass spectrometry: a textbook. Springer, Heidelberg. ISBN 3540407391

    Book  Google Scholar 

  99. Watson JT, Sparkman OD (2008) Introduction to mass spectrometry. Instrumentation, applications, and strategies for data interpretation, 4th edn. Wiley, Chichester. ISBN 978-0-470-51634-8

    Google Scholar 

  100. Ma B, Johnson R (2012) De novo sequencing and homology searching. Mol Cell Proteomics 11:1–16

    Article  Google Scholar 

  101. Nappi M, Weil C, Cleven CD et al (1997) Visual representations of simulated three-dimensional ion trajectories in an ion trap mass spectrometer. Int J Mass Spectrom Ion Proc 161:77–85

    Article  CAS  Google Scholar 

  102. Schweikhard L, Alber GM, Marshall AG (1992) FT/ICR of highly-charged atomic ions. Phys Scripta 46:598–602

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Calvete, J.J. (2014). The Expanding Universe of Mass Analyzer Configurations for Biological Analysis. In: Jorrin-Novo, J., Komatsu, S., Weckwerth, W., Wienkoop, S. (eds) Plant Proteomics. Methods in Molecular Biology, vol 1072. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-631-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-631-3_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-630-6

  • Online ISBN: 978-1-62703-631-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics