Skip to main content

N-Glycoprotein Enrichment by Lectin Affinity Chromatography

  • Protocol
  • First Online:
Plant Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1072))

Abstract

Lectins are proteins that bind to sugars with varying specificities and several have been identified that show differential binding to structurally variable glycans attached to glycoproteins. Consequently, lectin affinity chromatography represents a valuable tool for glycoproteome studies, allowing enrichment of glycoproteins in samples prior to their identification by mass spectrometry (MS). From the perspective of plant scientists, lectin enrichment has proven useful for studies of the proteomes of the secretory pathways and cell wall, due to the high proportion of constituent proteins that are glycosylated. This chapter outlines a strategy to generate samples enriched with glycoproteins from bulk plant tissues prior to further characterization by MS, or other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marino K, Bones J, Kattla JJ et al (2010) A systematic approach to protein glycosylation analysis: a path through the maze. Nat Chem Biol 6:713–723

    Article  PubMed  CAS  Google Scholar 

  2. An HJ, Froehlich JW, Lebrilla CB (2009) Determination of glycosylation sites and site-specific heterogeneity in glycoproteins. Curr Opin Chem Biol 13:421–426

    Article  PubMed  CAS  Google Scholar 

  3. Pless DD, Lennarz WJ (1977) Enzymatic conversion of proteins to glycoproteins. Proc Natl Acad Sci USA 74:134–138

    Article  PubMed  CAS  Google Scholar 

  4. Matsuoka K, Watanabe N, Nakamura K (1995) O-glycosylation of a precursor to a sweet potato vacuolar protein, sporamin, expressed in tobacco cells. Plant J 8:877–889

    Article  PubMed  CAS  Google Scholar 

  5. Cho YP, Chrispeels MJ (1976) Serine-O-galactosyl linkages in glycopeptides from carrot cell-walls. Phytochemistry 15: 165–169

    Article  CAS  Google Scholar 

  6. Showalter AM (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci 58:1399–1417

    Article  PubMed  CAS  Google Scholar 

  7. Velasquez SM, Ricardi MM, Dorosz JG et al (2011) O-glycosylated cell wall proteins are essential in root hair growth. Science 332: 1401–1403

    Article  PubMed  CAS  Google Scholar 

  8. Zielinska DF, Gnad F, Wisniewski JR et al (2010) Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141:897–907

    Article  PubMed  CAS  Google Scholar 

  9. Kaji H, Kamiie J, Kawakami H et al (2007) Proteomics reveals N-linked glycoprotein diversity in Caenorhabditis elegans and suggests an atypical translocation mechanism for integral membrane proteins. Mol Cell Proteomics 6:2100–2109

    Article  PubMed  CAS  Google Scholar 

  10. Wollscheid B, Bausch-Fluck D, Henderson C et al (2009) Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol 27: 378–386

    Article  PubMed  CAS  Google Scholar 

  11. Gundry RL, Raginski K, Tarasova Y et al (2009) The mouse C2C12 myoblast cell surface N-linked glycoproteome: identification, glycosite occupancy, and membrane orientation. Mol Cell Proteomics 8:2555–2569

    Article  PubMed  CAS  Google Scholar 

  12. Liu T, Qian WJ, Gritsenko MA et al (2005) Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J Proteome Res 4:2070–2080

    Article  PubMed  CAS  Google Scholar 

  13. Bunkenborg J, Pilch BJ, Podtelejnikov AV et al (2004) Screening for N-glycosylated proteins by liquid chromatography mass spectrometry. Proteomics 4:454–465

    Article  PubMed  CAS  Google Scholar 

  14. Lee A, Kolarich D, Haynes PA et al (2009) Rat liver membrane glycoproteome: enrichment by phase partitioning and glycoprotein capture. J Proteome Res 8:770–781

    Article  PubMed  CAS  Google Scholar 

  15. Minic Z, Jamet E, Negroni L et al (2007) A sub-proteome of Arabidopsis thaliana mature stems trapped on Concanavalin A is enriched in cell wall glycoside hydrolases. J Exp Bot 58:2503–2512

    Article  PubMed  CAS  Google Scholar 

  16. Catala C, Howe KJ, Hucko S et al (2011) Towards characterization of the glycoproteome of tomato (Solanum lycopersicum) fruit using Concanavalin A lectin affinity chromatography and LC-MALDI-MS/MS analysis. Proteomics 8:1530–1544

    Article  Google Scholar 

  17. Zhang Y, Giboulot A, Zivy M et al (2010) Combining various strategies to increase the coverage of the plant cell wall glycoproteome. Phytochemistry 10:1109–1123

    Google Scholar 

  18. Zhang H, Li XJ, Martin DB et al (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 21:660–666

    Article  PubMed  CAS  Google Scholar 

  19. Sparbier K, Koch S, Kessler I et al (2005) Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles. J Biomol Tech 16:407–413

    PubMed  Google Scholar 

  20. Nilsson CL (2011) Lectin techniques for glycoproteomics. Curr Proteomics 8:248–256

    Article  CAS  Google Scholar 

  21. McDonald CA, Yang JY, Marathe V et al (2009) Combining results from lectin affinity chromatography and glycocapture approaches substantially improves the coverage of the glycoproteome. Mol Cell Proteomics 8: 287–301

    PubMed  CAS  Google Scholar 

  22. Choi E, Loo D, Dennis JW et al (2011) High-throughput lectin magnetic bead array-coupled tandem mass spectrometry for glycoprotein biomarker discovery. Electrophoresis 32:3564–3575

    Article  PubMed  CAS  Google Scholar 

  23. Yang G, Cui T, Chen Q et al (2012) Isolation and identification of native membrane glycoproteins from living cell by concanavalin A-magnetic particle conjugates. Anal Biochem 421:339–341

    Article  PubMed  CAS  Google Scholar 

  24. Yamamoto K, Tsuji T, Osawa T (1998) Analysis of asparagine-linked oligosaccharides by sequential lectin-affinity chromatography. Methods Mol Biol 76:35–51

    PubMed  CAS  Google Scholar 

  25. Yamamoto K, Tsuji T, Osawa T (1995) Analysis of asparagine-linked oligosaccharides by sequential lectin affinity chromatography. Mol Biotechnol 3:25–36

    Article  PubMed  Google Scholar 

  26. Yang Z, Harris LE, Palmer-Toy DE et al (2006) Multilectin affinity chromatography for characterization of multiple glycoprotein biomarker candidates in serum from breast cancer patients. Clin Chem 52:1897–1905

    Article  PubMed  CAS  Google Scholar 

  27. Li L, Wang L, Zhang W et al (2004) Correlation of serum VEGF levels with clinical stage, therapy efficacy, tumor metastasis and patient survival in ovarian cancer. Anticancer Res 24:1973–1979

    PubMed  CAS  Google Scholar 

  28. Smith PK, Krohn RI, Hermanson GT et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

  29. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Article  PubMed  CAS  Google Scholar 

  30. Hardman KD, Ainsworth CF (1972) Myo-inositol binding site of concanavalin A. Nature 237:54–55

    CAS  Google Scholar 

  31. Hardman KD, Ainsworth CF (1972) Structure of concanavalin A at 2.4-A resolution. Biochemistry 11:4910–4919

    Article  PubMed  CAS  Google Scholar 

  32. Sumner JB (1919) The globulins of the jack bean, Canavalia ensiformis. J Biol Chem 37:137–142

    CAS  Google Scholar 

  33. Sumner JB, Howell SF (1936) Identification of hemagglutinin of jack bean with concanavalin A. J Bacteriol 32:227–237

    PubMed  CAS  Google Scholar 

  34. Kornfeld K, Reitman ML, Kornfeld R (1981) The carbohydrate-binding specificity of pea and lentil lectins. Fucose is an important determinant. J Biol Chem 256:6633–6640

    PubMed  CAS  Google Scholar 

  35. Shibuya N, Goldstein IJ, Van Damme EJ et al (1988) Binding properties of a mannose-specific lectin from the snowdrop (Galanthus nivalis) bulb. J Biol Chem 263: 728–734

    PubMed  CAS  Google Scholar 

  36. Onozaki K, Homma Y, Hashimoto T (1979) Purification of an L-fucose binding lectin from Ulex europeus by affinity column chromatography. Experientia 35:1556–1557

    Article  PubMed  CAS  Google Scholar 

  37. Kochibe N, Furukawa K (1980) Purification and properties of a novel fucose-specific hemagglutinin of Aleuria aurantia. Biochemistry 19:2841–2846

    Article  PubMed  CAS  Google Scholar 

  38. Nicolson GL, Blaustein J, Etzler ME (1974) Characterization of two plant lectins from Ricinus communis and their quantitative interaction with a murine lymphoma. Biochemistry 13:196–204

    Article  PubMed  CAS  Google Scholar 

  39. Nicolson GL, Blaustein J (1972) The interaction of Ricinus communis agglutinin with normal and tumor cell surfaces. Biochim Biophys Acta 266:543–547

    Article  PubMed  CAS  Google Scholar 

  40. Farrar GH, Uhlenbruck G, Holz G (1980) Comparison of isolated peanut agglutinin receptor glycoproteins from human, bovine and porcine erythrocyte membranes. Biochim Biophys Acta 603:185–197

    Article  PubMed  CAS  Google Scholar 

  41. Lotan R, Skutelsky E, Danon D et al (1975) The purification, composition, and specificity of the anti-T lectin from peanut (Arachis hypogaea). J Biol Chem 250:8518–8523

    PubMed  CAS  Google Scholar 

  42. Novogrodsky A, Lotan R, Ravid A et al (1975) Peanut agglutinin, a new mitogen that binds to galactosyl sites exposed after neuraminidase treatment. J Immunol 115:1243–1248

    PubMed  CAS  Google Scholar 

  43. Bunn-Moreno MM, Campos-Neto A (1981) Lectin(s) extracted from seeds of Artocarpus integrifolia (jackfruit): potent and selective stimulator(s) of distinct human T and B cell functions. J Immunol 127:427–429

    PubMed  CAS  Google Scholar 

  44. Grubhoffer L, Ticha M, Kocourek J (1981) Isolation and properties of a lectin from the seeds of hairy vetch (Vicia villosa Roth). Biochem J 195:623–626

    PubMed  CAS  Google Scholar 

  45. Kimura A, Wigzell H, Holmquist G et al (1979) Selective affinity fractionation of murine cytotoxic T lymphocytes (CTL). Unique lectin specific binding of the CTL associated surface glycoprotein, T 145. J Exp Med 149:473–484

    Article  PubMed  CAS  Google Scholar 

  46. Nagata Y, Burger MM (1974) Wheat germ agglutinin. Molecular characteristics and specificity for sugar binding. J Biol Chem 249: 3116–3122

    PubMed  CAS  Google Scholar 

  47. Nagata Y, Burger MM (1972) Wheat germ agglutinin. Isolation and crystallization. J Biol Chem 247:2248–2250

    PubMed  CAS  Google Scholar 

  48. Shibuya N, Goldstein IJ, Broekaert WF et al (1987) The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(alpha 2-6)Gal/GalNAc sequence. J Biol Chem 262: 1596–1601

    PubMed  CAS  Google Scholar 

  49. Yamamoto K, Konami Y, Irimura T (1997) Sialic acid-binding motif of Maackia amurensis lectins. J Biochem 121:756–761

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding to JKCR for research in this area is provided by the NSF Plant Genome Research Program (DBI-0606595) and the New York State Office of Science, Technology and Academic Research (NYSTAR).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ruiz-May, E., Catalá, C., Rose, J.K.C. (2014). N-Glycoprotein Enrichment by Lectin Affinity Chromatography. In: Jorrin-Novo, J., Komatsu, S., Weckwerth, W., Wienkoop, S. (eds) Plant Proteomics. Methods in Molecular Biology, vol 1072. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-631-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-631-3_43

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-630-6

  • Online ISBN: 978-1-62703-631-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics