Skip to main content

Isolation of Leaf Peroxisomes from Arabidopsis for Organelle Proteome Analyses

  • Protocol
  • First Online:
Plant Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1072))

Abstract

The isolation of cell organelles from model organisms in high purity is important for biochemical analyses of single proteins, entire metabolic pathways, and protein complexes and is absolutely essential for organelle proteome analyses. The efficient enrichment of nearly all cell organelles is more difficult from Arabidopsis as compared to traditional model plants and especially challenging for peroxisomes. Leaf peroxisomes are generally very instable in aqueous solution due to the presence of a single membrane and (para-)crystalline inclusions in the matrix. Leaf peroxisomes from Arabidopsis are particularly fragile and, moreover, strongly physically adhere to chloroplasts and mitochondria for largely unknown reasons. Here, we provide a detailed protocol for the isolation of Arabidopsis leaf peroxisomes by Percoll followed by sucrose density gradient centrifugation that yields high purity suitable for proteome analyses. Diverse enzymatic and immuno-biochemical methods are summarized to assess purity and intactness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CE:

Crude extract

FW:

Fresh weight

GB:

Grinding buffer

HPR:

Hydroxypyruvate reductase

LP-P1/2:

First/second purified leaf peroxisome fraction

TE:

Tricine-EDTA

References

  1. Yu C, Huang AH (1986) Conversion of serine to glycerate in intact spinach leaf peroxisomes: role of malate dehydrogenase. Arch Biochem Biophys 245:125–133

    Article  PubMed  CAS  Google Scholar 

  2. Lopez-Huertas E, Sandalio LM, Del Rio LA (1995) Integral membrane polypeptides of pea leaf peroxisomes: characterization and response to plant stress. Plant Physiol Biochem 33:295–302

    Google Scholar 

  3. Cooper TG, Beevers H (1969) Beta oxidation in glyoxysomes from castor bean endosperm. J Biol Chem 244:3514–3520

    PubMed  CAS  Google Scholar 

  4. Harrison-Lowe N, Olsen LJ (2006) Isolation of glyoxysomes from pumpkin cotyledons. Curr Protoc Cell Biol 3(19):1–8

    Google Scholar 

  5. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  6. Fukao Y, Hayashi M, Nishimura M (2002) Proteomic analysis of leaf peroxisomal proteins in greening cotyledons of Arabidopsis thaliana. Plant Cell Physiol 43:689–696

    Article  PubMed  CAS  Google Scholar 

  7. Reumann S, Babujee L, Ma C et al (2007) Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms. Plant Cell 19:3170–3193

    Article  PubMed  CAS  Google Scholar 

  8. Reumann S, Quan S, Aung K et al (2009) In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiol 150:125–143

    Article  PubMed  CAS  Google Scholar 

  9. Fukao Y, Hayashi M, Hara-Nishimura I et al (2003) Novel glyoxysomal protein kinase, GPK1, identified by proteomic analysis of glyoxysomes in etiolated cotyledons of Arabidopsis thaliana. Plant Cell Physiol 44:1002–1012

    Article  PubMed  CAS  Google Scholar 

  10. Eubel H, Meyer EH, Taylor NL et al (2008) Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. Plant Physiol 148:1809–1829

    Article  PubMed  CAS  Google Scholar 

  11. Kaur N, Reumann S, Hu J (2009) Peroxisome biogenesis and function. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. The American Society of Plant Biologists, Rockville, MD, USA, pp 1–41

    Google Scholar 

  12. Hu J, Baker A, Bartel B et al (2012) Plant peroxisomes: biogenesis and function. Plant Cell 24:2279–2303

    Article  PubMed  CAS  Google Scholar 

  13. Lingner T, Kataya AR, Antonicelli GE et al (2011) Identification of novel plant peroxisomal targeting signals by a combination of machine learning methods and in vivo subcellular targeting analyses. Plant Cell 23:1556–1572

    Article  PubMed  CAS  Google Scholar 

  14. Lingner T, Kataya AR, Reumann S (2012) Experimental and statistical post-validation of positive example EST sequences carrying peroxisome targeting signals type 1 (PTS1). Plant Signal Behav 7

    Google Scholar 

  15. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular 347:1–32

    Google Scholar 

  16. Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143

    Article  PubMed  CAS  Google Scholar 

  17. Timm S, Nunes-Nesi A, Parnik T et al (2008) A cytosolic pathway for the conversion of hydroxypyruvate to glycerate during photorespiration in Arabidopsis. Plant Cell 20:2848–2859

    Article  PubMed  CAS  Google Scholar 

  18. Timm S, Florian A, Jahnke K et al (2011) The hydroxypyruvate-reducing system in Arabidopsis: multiple enzymes for the same end. Plant Physiol 155:694–705

    Article  PubMed  CAS  Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  20. Ma C, Haslbeck M, Babujee L et al (2006) Identification and characterization of a stress-inducible and a constitutive small heat-shock protein targeted to the matrix of plant peroxisomes. Plant Physiol 141:47–60

    Article  PubMed  CAS  Google Scholar 

  21. Lisenbee CS, Lingard MJ, Trelease RN (2005) Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase. Plant J 43:900–914

    Article  PubMed  CAS  Google Scholar 

  22. Lisenbee CS, Heinze M, Trelease RN (2003) Peroxisomal ascorbate peroxidase resides within a subdomain of rough endoplasmic reticulum in wild-type Arabidopsis cells. Plant Physiol 132:870–882

    Article  PubMed  CAS  Google Scholar 

  23. Tugal HB, Pool M, Baker A (1999) Arabidopsis 22-kilodalton peroxisomal membrane protein. Nucleotide sequence analysis and biochemical characterization. Plant Physiol 120:309–320

    Article  PubMed  CAS  Google Scholar 

  24. Liepman AH, Olsen LJ (2001) Peroxisomal alanine: glyoxylate aminotransferase (AGT1) is a photorespiratory enzyme with multiple substrates in Arabidopsis thaliana. Plant J 25:487–498

    Article  PubMed  CAS  Google Scholar 

  25. Kubis SE, Lilley KS, Jarvis P (2008) Isolation and preparation of chloroplasts from Arabidopsis thaliana plants. Methods Mol Biol 425:171–186

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

Dr. R. Singhal was supported by an YGGDRASIL IS-MOBIL fellowship from the Norwegian Research Council.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Reumann, S., Singhal, R. (2014). Isolation of Leaf Peroxisomes from Arabidopsis for Organelle Proteome Analyses. In: Jorrin-Novo, J., Komatsu, S., Weckwerth, W., Wienkoop, S. (eds) Plant Proteomics. Methods in Molecular Biology, vol 1072. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-631-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-631-3_36

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-630-6

  • Online ISBN: 978-1-62703-631-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics