Skip to main content

Prioritization of Therapeutic Targets of Inflammation Using Proteomics, Bioinformatics, and In Silico Cell–Cell Interactomics

  • Protocol
  • First Online:
Immunoproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1061))

Abstract

Leukocyte extravasation is a multistep process, involving the movement of leukocytes out of the circulatory system, through vascular endothelium and to the site of tissue damage or infection. Protein–protein interactions play key roles in the extravasation process and have been attractive therapeutic targets for inhibiting inflammation using blocking (or neutralizing) antibodies. These targets include protein–protein interactions between cytokines (or chemokines) and their receptors on leukocytes and between adhesions molecules involving leukocyte–endothelium contacts. A number of therapeutics against these targets are currently used in clinic for treatment of inflammatory disorders, however, they are associated with side-effects partly due to the off-target actions (i.e., nonspecific targets). There is a need for novel targets involved in the leukocyte extravasation process that are specific to leukocyte subsets or to individual inflammatory disorder, and are amenable for drug development (i.e., duggable). In this chapter, we describe a methodology to identify novel “druggable” targets involving protein–protein interactions between activated leukocytes and endothelial cells using a combination of proteomics, bioinformatics and in silico interactomics. The result is a prioritized list of protein–protein interactions in a network consisting of leukocyte–endothelial cell communication and contacts. These prioritized targets can be pursued for the development of therapeutics such as neutralizing antibodies and for their validation through preclinical testing. The method described here provides the workflow to identify and clinically target important cell–cell interactions that are specific/selective for particular inflammatory disorders and to improve currently available therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown BA (2009) Natalizumab in the treatment of multiple sclerosis. Ther Clin Risk Manag 5:585–594

    Article  PubMed  CAS  Google Scholar 

  2. Benucci M, Saviola G, Manfredi M, Sarzi-Puttini P, Atzeni F (2012) Tumor necrosis factors blocking agents: analogies and differences. Acta Biomed 83:72–80

    PubMed  CAS  Google Scholar 

  3. Perot S, Sperandio O, Miteva MA, Camproux AC, Villoutreix BO (2010) Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery. Drug Discov Today 15:656–667

    Article  PubMed  CAS  Google Scholar 

  4. Rossi B, Constantin G (2008) Anti-selectin therapy for the treatment of inflammatory diseases. Inflamm Allergy Drug Targets 7:85–93

    Article  PubMed  CAS  Google Scholar 

  5. Engelhardt B, Wolburg H (2004) Mini-review: transendothelial migration of leukocytes: through the front door or around the side of the house? Eur J Immunol 34:2955–2963

    Article  PubMed  CAS  Google Scholar 

  6. Coisne C, Lyck R, Engelhardt B (2007) Therapeutic targeting of leukocyte trafficking across the blood–brain barrier. Inflamm Allergy Drug Targets 6:210–222

    Article  PubMed  CAS  Google Scholar 

  7. Wittchen ES (2009) Endothelial signaling in paracellular and transcellular leukocyte transmigration. Front Biosci 14:2522–2545

    Article  CAS  Google Scholar 

  8. Haqqani AS, Stanimirovic DB (2011) Intercellular interactomics of human brain endothelial cells and th17 lymphocytes: a novel strategy for identifying therapeutic targets of CNS inflammation. Cardiovasc Psychiatry Neurol 2011:175364

    PubMed  Google Scholar 

  9. Ransohoff RM (2005) Natalizumab and PML. Nat Neurosci 8:1275

    Article  PubMed  CAS  Google Scholar 

  10. Scheinfeld N (2004) A comprehensive review and evaluation of the side effects of the tumor necrosis factor alpha blockers etanercept, infliximab and adalimumab. J Dermatolog Treat 15:280–294

    Article  PubMed  CAS  Google Scholar 

  11. Cayrol R, Wosik K, Berard JL, Dodelet-Devillers A, Ifergan I, Kebir H, Haqqani AS, Kreymborg K, Krug S, Moumdjian R, Bouthillier A, Becher B, Arbour N, David S, Stanimirovic D, Prat A (2008) Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nat Immunol 9:137–145

    Article  PubMed  CAS  Google Scholar 

  12. Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A, Bourdoulous S, Turowski P, Male DK, Roux F, Greenwood J, Romero IA, Couraud PO (2005) Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 19:1872–1874

    PubMed  CAS  Google Scholar 

  13. Stanimirovic D, Shapiro A, Wong J, Hutchison J, Durkin J (1997) The induction of ICAM-1 in human cerebromicrovascular endothelial cells (HCEC) by ischemia-like conditions promotes enhanced neutrophil/HCEC adhesion. J Neuroimmunol 76:193–205

    Article  PubMed  CAS  Google Scholar 

  14. Haqqani AS, Kelly J, Baumann E, Haseloff RF, Blasig IE, Stanimirovic DB (2007) Protein markers of ischemic insult in brain endothelial cells identified using 2D gel electrophoresis and ICAT-based quantitative proteomics. J Proteome Res 6:226–239

    Article  PubMed  CAS  Google Scholar 

  15. Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, Giuliani F, Arbour N, Becher B, Prat A (2007) Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 13:1173–1175

    Article  PubMed  CAS  Google Scholar 

  16. Palagi PM, Walther D, Quadroni M, Catherinet S, Burgess J, Zimmermann-Ivol CG, Sanchez JC, Binz PA, Hochstrasser DF, Appel RD (2005) MSight: an image analysis software for liquid chromatography–mass spectrometry. Proteomics 5:2381–2384

    Article  PubMed  CAS  Google Scholar 

  17. Hirosawa M, Hoshida M, Ishikawa M, Toya T (1993) MASCOT: multiple alignment system for protein sequences based on three-way dynamic programming. Comput Appl Biosci 9:161–167

    PubMed  CAS  Google Scholar 

  18. Haqqani AS, Kelly JF, Stanimirovic DB (2008) Quantitative protein profiling by mass spectrometry using label-free proteomics. Methods Mol Biol 439:241–256

    Article  PubMed  CAS  Google Scholar 

  19. Saito R, Smoot ME, Ono K, Ruscheinski J, Wang PL, Lotia S, Pico AR, Bader GD, Ideker T (2012) A travel guide to Cytoscape plugins. Nat Methods 9:1069–1076

    Article  PubMed  CAS  Google Scholar 

  20. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  PubMed  CAS  Google Scholar 

  21. Assfalg A, Erdfelder E (2012) CAML—maximum likelihood consensus analysis. Behav Res Methods 44:189–201

    Article  PubMed  Google Scholar 

  22. bi-Haidar A, Kaur J, Maguitman A, Radivojac P, Rechtsteiner A, Verspoor K, Wang Z, Rocha LM (2008) Uncovering protein interaction in abstracts and text using a novel linear model and word proximity networks. Genome Biol 9(Suppl 2):S11

    Article  Google Scholar 

  23. Melnik O, Vardi Y, Zhang CH (2004) Mixed group ranks: preference and confidence in classifier combination. IEEE Trans Pattern Anal Mach Intell 26:973–981

    Article  PubMed  Google Scholar 

  24. Haqqani AS, Hill JJ, Mullen J, Stanimirovic D (2011) Methods to study glycoproteins at the blood–brain barrier using mass spectrometry. In: Nag S (ed) Methods in molecular biology: the blood–brain and other neural barriers. The Humana Press, Totowa, NJ, pp 337–353

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Haqqani, A.S., Stanimirovic, D.B. (2013). Prioritization of Therapeutic Targets of Inflammation Using Proteomics, Bioinformatics, and In Silico Cell–Cell Interactomics. In: Fulton, K., Twine, S. (eds) Immunoproteomics. Methods in Molecular Biology, vol 1061. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-589-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-589-7_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-588-0

  • Online ISBN: 978-1-62703-589-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics