Skip to main content

Formation and Characterization of the Nanoparticle–Protein Corona

  • Protocol
  • First Online:
Nanomaterial Interfaces in Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1025))

Abstract

Over the last decade the existence of “the corona,” a natural interface between nanomaterials and living matter in biological milieu, evolved from a vague concept into broadly recognized fact. This robust shell arises (to some extent) on the surface of all nanoparticles (NPs), even the ones designed to avoid its formation upon contact with biological fluids and confers a biological identity to the nanomaterials such that they can engage with cellular machinery. The NP corona consists of those proteins (and other biomolecules such as lipids and sugars) residing on the NP surface for a sufficient timescale to influence the NP’s properties and interactions with living systems. This chapter aims to provide simple protocols, as well as notes on potential pitfalls, to help researchers to perform basic experiments in this field as the basis for a more mechanistic approach to study and understand NP–protein corona complexes. This work has been supported by INSPIRE (Integrated NanoScience Platform for Ireland) funded by the Irish Government’s Programme for Research in Third Level Institutions, Cycle 4, National Development Plan 2007–2013, and 3MICRON (NMP-2009-LA-245572), NAMDIATREAM (NMP4-LA-2010-246479) and QualityNano (INFRA-2010-262163) funded by the European Commission 7th Framework Programme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104:2050–2055

    Article  CAS  Google Scholar 

  2. Lynch I, Dawson KA (2008) Protein–nanoparticle interactions. Nano Today 3:40–47

    Article  CAS  Google Scholar 

  3. Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Baldelli Bombelli F, Dawson KA (2011) Physical–chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133:2525–2534

    Article  CAS  Google Scholar 

  4. Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA (2010) What the cell “sees” in bionanoscience. J Am Chem Soc 132:5761–5768

    Article  CAS  Google Scholar 

  5. Kapralov AA, Feng WH, Amoscato AA, Yanamala N, Balasubramanian K, Winnica DE, Kisin ER, Kotchey GP, Gou P, Sparvero LJ, Ray P, Mallampalli RK, Klein-Seetharaman J, Fadeel B, Star A, Shvedova AA, Kagan VE (2012) Adsorption of surfactant lipids by single-walled carbon nanotubes in mouse lung upon pharyngeal aspiration. ACS Nano 6:4147–4156

    Article  CAS  Google Scholar 

  6. Walkey CD, Chan WC (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41:2780–2799

    Article  CAS  Google Scholar 

  7. Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  CAS  Google Scholar 

  8. Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, Knauer SK, Bantz C, Nawroth T, Bier C, Sirirattanapan J, Mann W, Treuel L, Zellner R, Maskos M, Schild H, Stauber RH (2011) Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5:7155–7167

    Article  CAS  Google Scholar 

  9. Martel J, Young D, Young A, Wu CY, Chen CD, Yu JS, Young JD (2011) Comprehensive proteomic analysis of mineral nanoparticles derived from human body fluids and analyzed by liquid chromatography-tandem mass spectrometry. Anal Biochem 418:111–125

    Article  CAS  Google Scholar 

  10. Zeng Z, Patel J, Lee SH, McCallum M, Tyagi A, Yan M, Shea KJ (2012) Synthetic polymer nanoparticle–polysaccharide interactions: a systematic study. J Am Chem Soc 134:2681–2690

    Article  CAS  Google Scholar 

  11. Milani S, Baldelli Bombelli F, Pitek AS, Dawson KA, Radler J (2012) Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona. ACS Nano 6:2532–2541

    Article  CAS  Google Scholar 

  12. Dobrovolskaia MA, Patri AK, Zheng J, Clogston JD, Ayub N, Aggarwal P, Neun BW, Hall JB, McNeil SE (2009) Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomedicine (Lond) 5:106–117

    CAS  Google Scholar 

  13. Zheng M, Li ZG, Huang XY (2004) Ethylene glycol monolayer protected nanoparticles: synthesis, characterization, and interactions with biological molecules. Langmuir 20:4226–4235

    Article  CAS  Google Scholar 

  14. Sund J, Alenius H, Vippola M, Savolainen K, Puustinen A (2011) Proteomic characterization of engineered nanomaterial–protein interactions in relation to surface reactivity. ACS Nano 5:4300–4309

    Article  CAS  Google Scholar 

  15. Deng ZJ, Mortimer G, Schiller T, Musumeci A, Martin D, Minchin RF (2009) Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology 20:455101

    Article  Google Scholar 

  16. Maiorano G, Sabella S, Sorce B, Brunetti V, Malvindi MA, Cingolani R, Pompa PP (2010) Effects of cell culture media on the dynamic formation of protein–nanoparticle complexes and influence on the cellular response. ACS Nano 4:7481–7491

    Article  CAS  Google Scholar 

  17. Zhang H, Burnum KE, Luna ML, Petritis BO, Kim JS, Qian WJ, Moore RJ, Heredia-Langner A, Webb-Robertson BJ, Thrall BD, Camp DG 2nd, Smith RD, Pounds JG, Liu T (2011) Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size. Proteomics 11:4569–4577

    Article  CAS  Google Scholar 

  18. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105:14265–14270

    Article  CAS  Google Scholar 

  19. Schaefer J, Schulze C, Marxer EE, Schaefer UF, Wohlleben W, Bakowsky U, Lehr CM (2012) Atomic force microscopy and analytical ultracentrifugation for probing nanomaterial protein interactions. ACS Nano 6:4603–4614

    Article  CAS  Google Scholar 

  20. Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S (2011) Protein–nanoparticle interactions: opportunities and challenges. Chem Rev 111:5610–5637

    Article  CAS  Google Scholar 

  21. Akesson A, Cardenas M, Elia G, Monopoli MP, Dawson KA (2012) The protein corona of dendrimers: PAMAM binds and activates complement proteins in human plasma in a generation dependent manner. RSC Adv 2:11245–11248

    Google Scholar 

  22. Lesniak A, Fenaroli F, Monopoli MP, Aberg C, Dawson KA, Salvati A (2012) Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6:5845–5857

    Article  CAS  Google Scholar 

  23. Ge C, Du J, Zhao L, Wang L, Liu Y, Li D, Yang Y, Zhou R, Zhao Y, Chai Z, Chen C (2011) Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci USA 108:16968–16973

    Article  CAS  Google Scholar 

  24. Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N, Fan C, Huang Q (2011) Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5:3693–3700

    Article  CAS  Google Scholar 

  25. Deng ZJ, Liang M, Monteiro M, Toth I, Minchin RF (2011) Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol 6:39–44

    Article  CAS  Google Scholar 

  26. Monopoli MP, Bombelli FB, Dawson KA (2011) Nanobiotechnology: nanoparticle coronas take shape. Nat Nanotechnol 6:11–12

    Article  CAS  Google Scholar 

  27. Pitek AS, O'Connell D, Mahon E, Monopoli MP, Baldelli Bombelli F, Dawson KA (2012) Transferrin coated nanoparticles: study of the bionano interface in human plasma. PLoS One 7:e40685

    Article  CAS  Google Scholar 

  28. Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V (2010) Time evolution of the nanoparticle protein corona. ACS Nano 4:3623–3632

    Article  CAS  Google Scholar 

  29. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  CAS  Google Scholar 

  30. Simpson RJ (2008) Proteins and proteomics: a laboratory manual. Cold Spring Harbor Laboratory. http://www.proteinsandproteomics.org/home_1.html

  31. Rai AJ, Gelfand CA, Haywood BC, Warunek DJ, Yi J, Schuchard MD, Mehigh RJ, Cockrill SL, Scott GB, Tammen H, Schulz-Knappe P, Speicher DW, Vitzthum F, Haab BB, Siest G, Chan DW (2005) HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics 5:3262–3277

    Article  CAS  Google Scholar 

  32. Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes VF (2011) Hardening of the nanoparticle–protein corona in metal (Au, Ag) and oxide (Fe3O4, CoO, and CeO2) nanoparticles. Small 7:3479–3486

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Monopoli, M.P., Pitek, A.S., Lynch, I., Dawson, K.A. (2013). Formation and Characterization of the Nanoparticle–Protein Corona. In: Bergese, P., Hamad-Schifferli, K. (eds) Nanomaterial Interfaces in Biology. Methods in Molecular Biology, vol 1025. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-462-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-462-3_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-461-6

  • Online ISBN: 978-1-62703-462-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics