Skip to main content

Recombinant Expression and Functional Testing of Candidate Adenylate Cyclase Domains

  • Protocol
  • First Online:
Cyclic Nucleotide Signaling in Plants

Abstract

Adenylate cyclases (ACs) are enzymes capable of converting adenosine-5′-triphosphate to cyclic 3′, 5′-­adenosine monophosphate (cAMP). In animals and lower eukaryotes, ACs and their product cAMP have firmly been established as important signalling molecules with important roles in several cellular signal transduction pathways. However, in higher plants, the only annotated and experimentally confirmed AC is a Zea mays pollen protein capable of generating cAMP. Recently a number of candidate AC-encoding genes in Arabidopsis thaliana have been proposed based on functionally assigned amino acids in the catalytic center of annotated and/or experimentally tested nucleotide cyclases in lower and higher eukaryotes. Here we detail the cloning and recombinant expression of functional candidate AC domains using, as an example, the A. thaliana pentatricopeptide repeat-containing protein (AtPPR-AC; At1g62590). Through a complementation test, in vivo adenylate cyclase activity of candidate recombinant molecules can be prescreened and promising candidates can subsequently be further evaluated in an in vitro AC immunoassay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robison GA, Butcher RW, Sutherland EW (1968) Cyclic AMP. Annu Rev Biochem 37:149–174

    Article  PubMed  CAS  Google Scholar 

  2. Goodman DB, Rasmussen H, DiBella F et al (1970) Cyclic adenosine 3′:5′-monophosphate-stimulated phosphorylation of isolated neurotubule subunits. Proc Natl Acad Sci USA 67:652–659

    Article  PubMed  CAS  Google Scholar 

  3. Gerisch G, Hülser D, Malchow D et al (1975) Cell communication by periodic cyclic-AMP pulses. Philos Trans R Soc Lond B Biol Sci 272:181–192

    Article  PubMed  CAS  Google Scholar 

  4. Ashton AR, Polya GM (1978) Cyclic adenosine 3′:5′-monophosphate in axenic rye grass endosperm cell cultures. Plant Physiol 61:718–722

    Article  PubMed  CAS  Google Scholar 

  5. Butcher RW, Baird CE, Sutherland EW (1968) Effects of lipolytic and antilipolytic substances on adenosine 3′,5′-monophosphate levels in ­isolated fat cells. J Biol Chem 243:1705–1712

    PubMed  CAS  Google Scholar 

  6. Amrhein N (1977) The current status of cyclic AMP in higher plants. Annu Rev Plant Physiol 28:123–132

    Article  CAS  Google Scholar 

  7. Meier S, Ruzvidzo O, Morse M et al (2010) The Arabidopsis wall-associated kinase-like 10 gene encodes a functional guanylyl cyclase and is co-expressed with pathogen defense related genes. PLoS One 5:e8904

    Article  PubMed  Google Scholar 

  8. Kurosaki F, Nishi A (1993) Stimulation of ­calcium influx and calcium cascade by cyclic AMP in cultured carrot cells. Arch Biochem Biophys 302:144–151

    Article  PubMed  CAS  Google Scholar 

  9. Carricarte VC, Bianchini GM, Muschietti JP et al (1988) Adenylate cyclase activity in a higher plant, alfalfa (Medicago sativa). Biochem J 249:807–811

    PubMed  CAS  Google Scholar 

  10. Li W, Luan S, Schreiber SL et al (1994) Cyclic AMP stimulates K+ channel activity in mesophyll cells of Vicia faba L. Plant Physiol 106:957–961

    Article  PubMed  CAS  Google Scholar 

  11. Moutinho A, Hussey PJ, Trewavas AJ et al (2001) cAMP acts as a second messenger in pollen tube growth and reorientation. Proc Natl Acad Sci USA 98:10481–10486

    Article  PubMed  CAS  Google Scholar 

  12. DeYoung BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immun 7:1243–1249

    Article  CAS  Google Scholar 

  13. Newton RP, Smith CJ (2004) Cyclic nucleotides. Phytochemistry 65:2423–2437

    Article  PubMed  CAS  Google Scholar 

  14. Kwezi L, Meier S, Mungur L et al (2007) The Arabidopsis thaliana brassinosteroid receptor (AtBRI1) contains a domain that functions as a guanylyl cyclase in vitro. PLoS One 2:7

    Article  Google Scholar 

  15. Mulaudzi T, Ludidi N, Ruzvidzo O et al (2011) Identification of a novel Arabidopsis thaliana nitric oxide-binding molecule with guanylate cyclase activity in vitro. FEBS lett 585:2693–2697

    Article  PubMed  CAS  Google Scholar 

  16. Gehring C (2010) Adenyl cyclases and cAMP in plant signaling—past and present. Cell Commun Signal 8:15

    Article  PubMed  Google Scholar 

  17. Nakamura T, Schuster G, Sugiura G et al (2004) Chloroplast RNA-binding and pentatricopeptide repeat proteins. Biochem Soc Trans 32:571–574

    Article  PubMed  CAS  Google Scholar 

  18. Kotera E, Tasaka M, Shikanai T (2005) A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts. Nature 433:326–330

    Article  PubMed  CAS  Google Scholar 

  19. Schmitz-Linneweber C, Williams-Carrier R, Barkan A (2005) RNA immunoprecipitation and microarray analysis show a chloroplast pentatricopeptide repeat protein to be associated with the 5′ region of mRNAs whose translation it activates. Plant Cell 17:2791–2804

    Article  PubMed  CAS  Google Scholar 

  20. Kurien BT, Scofield RH (2009) Nonelec­trophoretic bidirectional transfer of a single SDS-PAGE gel with multiple antigens to obtain 12 immunoblots. Methods Mol Biol 536:55–65

    Article  PubMed  CAS  Google Scholar 

  21. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  22. Tang WJ, Stanzel M, Gilman AG (1995) Truncation and alanine-scanning mutants of type I adenylyl cyclase. Biochemistry 34:14563–14572

    Article  PubMed  CAS  Google Scholar 

  23. Tesmer JJ, Dessauer CW, Sunahara RK et al (2000) Molecular basis for P-site inhibition of adenylyl cyclase. Biochemistry 39:14464–14471

    Article  PubMed  CAS  Google Scholar 

  24. Geng W, Wang Z, Zhang J et al (2005) Cloning and characterization of the human soluble adenylyl cyclase. Am J Physiol 288:C1305–C1316

    Article  CAS  Google Scholar 

  25. Oh M-H, Kim HS, Wu X et al (2012) Calcium/calmodulin inhibition of the Arabidopsis BRASSINOSTEROID-INSENSITIVE 1 receptor kinase provides a possible link between calcium and brassinosteroid signalling. Biochem J 443:515–523

    Article  PubMed  CAS  Google Scholar 

  26. Chen Y, Cann MJ, Litvin TN et al (2000) Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289:625–628

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This material is based upon work supported financially by the National Research Foundation but any opinion, findings and ­conclusions or recommendations expressed in this material are those of the author(s) and therefore the NRF does not accept any liability in regard thereto.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ruzvidzo, O., Dikobe, B.T., Kawadza, D.T., Mabadahanye, G.H., Chatukuta, P., Kwezi, L. (2013). Recombinant Expression and Functional Testing of Candidate Adenylate Cyclase Domains. In: Gehring, C. (eds) Cyclic Nucleotide Signaling in Plants. Methods in Molecular Biology, vol 1016. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-441-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-441-8_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-440-1

  • Online ISBN: 978-1-62703-441-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics