Skip to main content

Chemokine-Dependent Signaling Pathways in the Peripheral Nervous System

  • Protocol
  • First Online:
Chemokines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1013))

Abstract

Chemokines and their G-protein-coupled receptors play important roles in development, homeostasis, and the innate and adaptive immune response. Pathologic chemokine signaling pathways in the peripheral nervous system can be studied in peripheral nerves using human in vitro models of the blood–nerve barrier (BNB) and a reliable model of acute peripheral nerve inflammation called severe murine experimental autoimmune neuritis (EAN). This chapter describes a flow-dependent human leukocyte-BNB trafficking assay and the reliable induction of EAN in female SJL/J mice as tools to study pro-inflammatory chemokine-dependent signaling in peripheral nerves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ubogu EE (2011) Chemokine receptors as specific anti-inflammatory targets in peripheral nerves. Endocr Metab Immune Disord Drug Targets 11:141–153

    Article  PubMed  CAS  Google Scholar 

  2. Kieseier B, Krivacic K, Jung S et al (2000) Sequential expression of chemokines in experimental autoimmune neuritis. J Neuroimmunol 110:121–129

    Article  PubMed  CAS  Google Scholar 

  3. Kinter J, Broglio L, Steck AJ et al (2010) Gene expression profiling in nerve biopsy of vasculitic neuropathy. J Neuroimmunol 225:184–189

    Article  PubMed  CAS  Google Scholar 

  4. Orlikowski D, Chazaud B, Plonquet A et al (2003) Monocyte chemoattractant protein 1 and chemokine receptor CCR2 productions in Guillain-Barré syndrome and experimental autoimmune neuritis. J Neuroimmunol 134:118–127

    Article  PubMed  CAS  Google Scholar 

  5. Perrin F, Lacroix S, Avilés-Trigueros M et al (2005) Involvement of monocyte chemoattractant protein-1, macrophage inflammatory protein-1alpha and interleukin-1beta in Wallerian degeneration. Brain 128:854–866

    Article  PubMed  Google Scholar 

  6. Press R, Pashenkov M, Jin J et al (2003) Aberrated levels of cerebrospinal fluid chemokines in Guillain-Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy. J Clin Immunol 23:259–267

    Article  PubMed  CAS  Google Scholar 

  7. White F, Jung H, Miller R (2007) Chemokines and the pathophysiology of neuropathic pain. Proc Natl Acad Sci USA 104:20151–20158

    Article  PubMed  CAS  Google Scholar 

  8. Yosef N, Ubogu EE (2012) alpha(M) beta(2) -integrin-intercellular adhesion molecule-1 interactions drive the flow-dependent trafficking of Guillain-Barre syndrome patient derived mononuclear leukocytes at the blood-nerve barrier in vitro. J Cell Physiol 227:3857–3875. doi:10.1002/jcp.24100

    Google Scholar 

  9. Alon R, Ley K (2008) Cells on the run: shear-regulated integrin activation in leukocyte rolling and arrest on endothelial cells. Curr Opin Cell Biol 20:525–532

    Article  PubMed  CAS  Google Scholar 

  10. Man S, Tucky B, Bagheri N et al (2009) alpha4 Integrin/FN-CS1 mediated leukocyte adhesion to brain microvascular endothelial cells under flow conditions. J Neuroimmunol 210:92–99

    Article  PubMed  CAS  Google Scholar 

  11. Shulman Z, Alon R (2009) Chapter 14. Real-time in vitro assays for studying the role of chemokines in lymphocyte transendothelial migration under physiologic flow conditions. Methods Enzymol 461:311–332

    Article  PubMed  CAS  Google Scholar 

  12. Gopalan P, Jones D, McIntire L et al (2001) Cell adhesion under hydrodynamic flow conditions. Curr Protoc Immunol Chapter 7:Unit 7.29

    Google Scholar 

  13. Meyer zu Hörste G, Hartung H, Kieseier B (2007) From bench to bedside—experimental rationale for immune-specific therapies in the inflamed peripheral nerve. Nat Clin Pract Neurol 3:198–211

    Article  PubMed  Google Scholar 

  14. Xia R, Yosef N, Ubogu E (2010) Clinical, electrophysiological and pathologic correlations in a severe murine experimental autoimmune neuritis model of Guillain-Barré syndrome. J Neuroimmunol 219:54–63

    Article  PubMed  CAS  Google Scholar 

  15. Xia RH, Yosef N, Ubogu EE (2010) Selective expression and cellular localization of pro-inflammatory chemokine ligand/receptor pairs in the sciatic nerves of a severe murine experimental autoimmune neuritis model of Guillain-Barré syndrome. Neuropathol Appl Neurobiol 36:388–398

    Article  PubMed  CAS  Google Scholar 

  16. Calida D, Kremlev S, Fujioka T et al (2000) Experimental allergic neuritis in the SJL/J mouse: induction of severe and reproducible disease with bovine peripheral nerve myelin and pertussis toxin with or without interleukin-12. J Neuroimmunol 107:1–7

    Article  PubMed  CAS  Google Scholar 

  17. Xia RH, Yosef N, Burns AR, Eichberg J, Ubogu EE (2012) Isolation, purification and verification of peripheral nerve myelin derived from bovine cauda equina. J Neurol Neurophysiol doi:10.4172/2155-9562.S7-002

  18. Mahad D, Callahan M, Williams K et al (2006) Modulating CCR2 and CCL2 at the blood–brain barrier: relevance for multiple sclerosis pathogenesis. Brain 129:212–223

    Article  PubMed  Google Scholar 

  19. Ubogu E, Callahan M, Tucky B et al (2006) Determinants of CCL5-driven mononuclear cell migration across the blood–brain barrier. Implications for therapeutically modulating neuroinflammation. J Neuroimmunol 179:132–144

    Article  PubMed  CAS  Google Scholar 

  20. Yosef N, Xia R, Ubogu E (2010) Development and characterization of a novel human in vitro blood-nerve barrier model using primary endoneurial endothelial cells. J Neuropathol Exp Neurol 69:82–97

    Article  PubMed  Google Scholar 

  21. Ubogu EE, Yosef N, Xia RH et al (2012) Behavioral, electrophysiological, and histopathological characterization of a severe murine chronic demyelinating polyneuritis model. J Peripher Nerv Syst 17:53–61

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was initially supported by a Baylor College of Medicine New Investigator Start-Up Award and grants from the Guillain–Barré syndrome/Chronic Inflammatory Demyelinating Polyradiculoneuropathy Foundation International, and is currently supported by National Institutes of Health/National Institute of Neurological Disorders and Stroke grants NS073702, NS075212, and NS078226 to EEU.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ubogu, E.E. (2013). Chemokine-Dependent Signaling Pathways in the Peripheral Nervous System. In: Cardona, A., Ubogu, E. (eds) Chemokines. Methods in Molecular Biology, vol 1013. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-426-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-426-5_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-425-8

  • Online ISBN: 978-1-62703-426-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics