Skip to main content

Identification and Characterization of Programmed Cell Death Markers in Bacterial Models

  • Protocol
  • First Online:
Necrosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1004))

Abstract

In eukaryotic organisms facing terminal stress, activation of genetically encoded cell death pathways underlies fundamental changes in core cellular processes and functional modification of critical biomolecules. These physiological alterations manifest themselves as phenotypic hallmarks during programmed cell death, and are markers of the particular mode of death initiated. A growing volume of work has illustrated that prokaryotes too are capable of exhibiting hallmarks of programmed cell death, albeit without the multiple, tight regulatory layers which control these events in higher order organisms.

This chapter describes how methods and materials which have been used to assay for hallmarks of programmed cell death in eukaryotic models are transferrable to prokaryotic models. In particular, we describe the applicability of these methods to the study of post-antibiotic effects on bacteria, notably the biochemical changes induced by the interaction of drug molecules and targets, including oxidative stress, that accompany and ensure cell death. Specifically we discuss techniques for detecting DNA fragmentation, chromosomal condensation, phosphatidylserine exposure, membrane depolarization, and caspase substrate peptide binding, thereby providing a launchpoint for the study of the evolution of these physiological events in bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    Article  CAS  PubMed  Google Scholar 

  3. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116(2):205–219

    Article  CAS  PubMed  Google Scholar 

  4. Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16(6):663–669

    Article  CAS  PubMed  Google Scholar 

  5. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on cell death 2009. Cell Death Differ 16(1):3–11

    Article  CAS  PubMed  Google Scholar 

  6. Nicholson DW, Thornberry NA (1997) Caspases: killer proteases. Trends Biochem Sci 22(8):299–306

    Article  CAS  PubMed  Google Scholar 

  7. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407(6805):770–776

    Article  CAS  PubMed  Google Scholar 

  8. Strasser A, O’Connor L, Dixit VM (2000) Apoptosis signaling. Annu Rev Biochem 69:217–245

    Article  CAS  PubMed  Google Scholar 

  9. Peterson JS, Barkett M, McCall K (2003) Stage-specific regulation of caspase activity in drosophila oogenesis. Dev Biol 260(1):113–123

    Article  CAS  PubMed  Google Scholar 

  10. Broker LE, Kruyt FA, Giaccone G (2005) Cell death independent of caspases: a review. Clin Cancer Res 11(9):3155–3162

    Article  PubMed  Google Scholar 

  11. Reddien PW, Horvitz HR (2004) The engulfment process of programmed cell death in caenorhabditis elegans. Annu Rev Cell Dev Biol 20:193–221

    Article  CAS  PubMed  Google Scholar 

  12. Ren Y, Savill J (1998) Apoptosis: the importance of being eaten. Cell Death Differ 5(7):563–568

    Article  CAS  PubMed  Google Scholar 

  13. Festjens N, Vanden Berghe T, Vandenabeele P (2006) Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta 1757(9–10):1371–1387

    Article  CAS  PubMed  Google Scholar 

  14. Golstein P, Kroemer G (2007) Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 32(1):37–43

    Article  CAS  PubMed  Google Scholar 

  15. Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with ­endogenous endonuclease activation. Nature 284(5756):555–556

    Article  CAS  PubMed  Google Scholar 

  16. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148(7):2207–2216

    CAS  PubMed  Google Scholar 

  17. Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC, LaFace DM, Green DR (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182(5):1545–1556

    Article  CAS  PubMed  Google Scholar 

  18. Buttke TM, Sandstrom PA (1994) Oxidative stress as a mediator of apoptosis. Immunol Today 15(1):7–10

    Article  CAS  PubMed  Google Scholar 

  19. Jacobson MD (1996) Reactive oxygen species and programmed cell death. Trends Biochem Sci 21(3):83–86

    Article  CAS  PubMed  Google Scholar 

  20. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281(5381):1309–1312

    Article  CAS  PubMed  Google Scholar 

  21. Chandra J, Samali A, Orrenius S (2000) Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med 29(3–4):323–333

    Article  CAS  PubMed  Google Scholar 

  22. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95

    Article  CAS  PubMed  Google Scholar 

  23. Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29(3–4):222–230

    Article  CAS  PubMed  Google Scholar 

  24. Skulachev VP (2006) Bioenergetic aspects of apoptosis, necrosis and mitoptosis. Apoptosis 11(4):473–485

    Article  CAS  PubMed  Google Scholar 

  25. Tan S, Sagara Y, Liu Y, Maher P, Schubert D (1998) The regulation of reactive oxygen species production during programmed cell death. J Cell Biol 141(6):1423–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dwyer DJ, Kohanski MA, Hayete B, Collins JJ (2007) Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Mol Syst Biol 3:91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130(5):797–810

    Article  CAS  PubMed  Google Scholar 

  28. Dwyer DJ, Camacho DM, Kohanski MA, Callura JM, Collins JJ (2012) ­Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol Cell 46(5):561–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Madeo F, Frohlich E, Frohlich KU (1997) A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol 139(3):729–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Madeo F, Frohlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Frohlich KU (1999) Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145(4):757–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184(1):39–51

    Article  CAS  PubMed  Google Scholar 

  32. Kroemer G, Petit P, Zamzami N, Vayssiere JL, Mignotte B (1995) The biochemistry of programmed cell death. FASEB J 9(13):1277–1287

    Article  CAS  PubMed  Google Scholar 

  33. Foti JJ, Devadoss B, Winkler JA, Collins JJ, Walker GC (2012) Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science 336(6079):315–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rohwer F, Azam F (2000) Detection of DNA damage in prokaryotes by terminal deoxyribonucleotide transferase-mediated dUTP nick end labeling. Appl Environ Microbiol 66(3):1001–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119(3):493–501

    Article  CAS  PubMed  Google Scholar 

  36. Darzynkiewicz Z, Crissman H, Jacobberger JW (2004) Cytometry of the cell cycle: cycling through history. Cytometry A 58(1):21–32

    Article  PubMed  Google Scholar 

  37. Galluzzi L, Zamzami N, de La Motte RT, Lemaire C, Brenner C, Kroemer G (2007) Methods for the assessment of mitochondrial membrane permeabilization in apoptosis. Apoptosis 12(5):803–813

    Article  CAS  PubMed  Google Scholar 

  38. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91(4):479–489

    Article  CAS  PubMed  Google Scholar 

  39. Rottenberg H, Wu S (1998) Quantitative assay by flow cytometry of the mitochondrial membrane potential in intact cells. Biochim Biophys Acta 1404(3):393–404

    Article  CAS  PubMed  Google Scholar 

  40. Epps DE, Wolfe ML, Groppi V (1994) Characterization of the steady-state and dynamic fluorescence properties of the potential-sensitive dye bis-(1,3-dibutylbarbituric acid)trimethine oxonol (Dibac4(3)) in model systems and cells. Chem Phys Lipids 69(2):137–150

    Article  CAS  PubMed  Google Scholar 

  41. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281(5381):1312–1316

    Article  CAS  PubMed  Google Scholar 

  42. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326(Pt 1):1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lamkanfi M, Festjens N, Declercq W, Vanden Berghe T, Vandenabeele P (2007) Caspases in cell survival, proliferation and differentiation. Cell Death Differ 14(1):44–55

    Article  CAS  PubMed  Google Scholar 

  44. Vercammen D, Declercq W, Vandenabeele P, Van Breusegem F (2007) Are metacaspases caspases? J Cell Biol 179(3):375–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Talanian RV, Quinlan C, Trautz S, Hackett MC, Mankovich JA, Banach D, Ghayur T, Brady KD, Wong WW (1997) Substrate specificities of caspase family proteases. J Biol Chem 272(15):9677–9682

    Article  CAS  PubMed  Google Scholar 

  46. Garcia-Calvo M, Peterson EP, Leiting B, Ruel R, Nicholson DW, Thornberry NA (1998) Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem 273(49):32608–32613

    Article  CAS  PubMed  Google Scholar 

  47. Timmer JC, Salvesen GS (2007) Caspase substrates. Cell Death Differ 14(1):66–72

    Article  CAS  PubMed  Google Scholar 

  48. Le Gac S, Vermes I, van den Berg A (2006) Quantum dots based probes conjugated to annexin V for photostable apoptosis detection and imaging. Nano Lett 6(9):1863–1869

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank James Collins for his mentorship and support of this work through his Howard Hughes Medical Institute Investigator and NIH Director’s Pioneer Award Program awards. We also thank Jarred Callura for his assistance with UV irradiation treatment design and Ahmad Khalil for his assistance with fluorescent microscopy, as well as with the design of Qdot-based Annexin V experiments.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dwyer, D.J., Winkler, J.A. (2013). Identification and Characterization of Programmed Cell Death Markers in Bacterial Models. In: McCall, K., Klein, C. (eds) Necrosis. Methods in Molecular Biology, vol 1004. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-383-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-383-1_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-382-4

  • Online ISBN: 978-1-62703-383-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics