Skip to main content

Isolation of Muscle-Derived Stem/Progenitor Cells Based on Adhesion Characteristics to Collagen-Coated Surfaces

  • Protocol
  • First Online:
Stem Cells and Aging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 976))

Abstract

Our lab developed and optimized a method, known as the modified pre-plate technique, to isolate stem/progenitor cells from skeletal muscle. This method separates different populations of myogenic cells based on their propensity to adhere to a collagen I-coated surface. Based on their surface markers and stem-like properties, including self-renewal, multi-lineage differentiation, and ability to promote tissue regeneration, the last cell fraction or slowest to adhere to the collagen-coated surface (pre-plate 6; pp6) appears to be early, quiescent progenitor cells termed muscle-derived stem/progenitor cells (MDSPCs). The cell fractions preceding pp6 (pp1–5) are likely populations of more committed (differentiated) cells, including fibroblast- and myoblast-like cells. This technique may be used to isolate MDSPCs from skeletal muscle of humans or mice regardless of age, sex or disease state, although the yield of MDSPCs varies with age and health. MDSPCs can be used for regeneration of a variety of tissues including bone, articular cartilage, skeletal and cardiac muscle, and nerve. MDSPCs are currently being tested in clinical trials for treatment of urinary incontinence and myocardial infarction. MDSPCs from young mice have also been demonstrated to extend life span and healthspan in mouse models of accelerated aging through an apparent paracrine/endocrine mechanism. Here we detail methods for isolation and characterization of MDSPCs.

*Mitra Lavasani and Aiping Lu contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pera MF (2001) Scientific considerations relating to the ethics of the use of human embryonic stem cells in research and medicine. Reprod Fertil Dev 13(1):23–29

    Article  PubMed  CAS  Google Scholar 

  2. Hook CC (2010) In vitro fertilization and stem cell harvesting from human embryos: the law and practice in the United States. Pol Arch Med Wewn 120(7–8):282–289

    PubMed  Google Scholar 

  3. Blendon RJ et al (2011) The public, political parties, and stem-cell research. N Engl J Med 365(20):1853–1856

    Article  PubMed  CAS  Google Scholar 

  4. Usas A et al (2011) Skeletal muscle-derived stem cells: implications for cell-mediated therapies. Medicina (Kaunas) 47(9):469–479

    Google Scholar 

  5. Mizuno H (2010) Adipose-derived stem and stromal cells for cell-based therapy: current status of preclinical studies and clinical trials. Curr Opin Mol Ther 12(4):442–449

    PubMed  CAS  Google Scholar 

  6. Wilson A et al (2011) Adipose-derived stem cells for clinical applications: a review. Cell Prolif 44(1):86–98

    Article  PubMed  CAS  Google Scholar 

  7. Carr LK et al (2008) 1-year follow-up of autologous muscle-derived stem cell injection pilot study to treat stress urinary incontinence. Int Urogynecol J Pelvic Floor Dysfunct 19(6):881–883

    Article  PubMed  CAS  Google Scholar 

  8. Owen M (1988) Marrow stromal stem cells. J Cell Sci Suppl 10:63–76

    PubMed  CAS  Google Scholar 

  9. da Silva Meirelles L et al (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119(Pt 11):2204–2213

    Article  PubMed  Google Scholar 

  10. Watts C et al (2005) Anatomical perspectives on adult neural stem cells. J Anat 207(3):197–208

    Article  PubMed  CAS  Google Scholar 

  11. Lim DA et al (2007) The adult neural stem cell niche: lessons for future neural cell replacement strategies. Neurosurg Clin N Am 18(1):81–92, ix

    Article  PubMed  Google Scholar 

  12. Baroffio A et al (1996) Identification of self-renewing myoblasts in the progeny of single human muscle satellite cells. Differentiation 60(1):47–57

    Article  PubMed  CAS  Google Scholar 

  13. Qu-Petersen Z et al (2002) Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 157(5):851–864

    Article  PubMed  CAS  Google Scholar 

  14. Sherwood RI et al (2004) Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell 119(4):543–554

    Article  PubMed  CAS  Google Scholar 

  15. Shen W et al (2003) Adipose tissue quantification by imaging methods: a proposed classification. Obes Res 11(1):5–16

    Article  PubMed  Google Scholar 

  16. Toma JG et al (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3(9):778–784

    Article  PubMed  CAS  Google Scholar 

  17. Burke ZD et al (2007) Stem cells in the adult pancreas and liver. Biochem J 404(2):169–178

    Article  PubMed  CAS  Google Scholar 

  18. Barker N et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165):1003–1007

    Article  PubMed  CAS  Google Scholar 

  19. Yen TH, Wright NA (2006) The gastrointestinal tract stem cell niche. Stem Cell Rev 2(3):203–212

    Article  PubMed  CAS  Google Scholar 

  20. Deasy BM et al (2005) Long-term self-renewal of postnatal muscle-derived stem cells. Mol Biol Cell 16(7):3323–3333

    Article  PubMed  CAS  Google Scholar 

  21. Lavasani M et al (2012) Muscle-derived stem/progenitor cell dysfunction limits healthspan and lifespan in a murine progeria model. Nat Commun 3:608

    Article  PubMed  Google Scholar 

  22. Yokoyama T et al (2001) Autologous primary muscle-derived cells transfer into the lower urinary tract. Tissue Eng 7(4):395–404

    Article  PubMed  CAS  Google Scholar 

  23. Chancellor MB et al (2001) Gene therapy strategies for urological dysfunction. Trends Mol Med 7(7):301–306

    Article  PubMed  CAS  Google Scholar 

  24. Musgrave DS et al (2002) Human skeletal muscle cells in ex vivo gene therapy to deliver bone morphogenetic protein-2. J Bone Joint Surg Br 84(1):120–127

    Article  PubMed  CAS  Google Scholar 

  25. Sakai T et al (2002) The use of ex vivo gene transfer based on muscle-derived stem cells for cardiovascular medicine. Trends Cardiovasc Med 12(3):115–120

    Article  PubMed  CAS  Google Scholar 

  26. Peng H et al (2002) Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J Clin Invest 110(6):751–759

    PubMed  CAS  Google Scholar 

  27. Ikezawa M et al (2003) Dystrophin delivery in dystrophin-deficient DMDmdx skeletal muscle by isogenic muscle-derived stem cell transplantation. Hum Gene Ther 14(16):1535–1546

    Article  PubMed  CAS  Google Scholar 

  28. Hannallah D et al (2004) Retroviral delivery of Noggin inhibits the formation of heterotopic ossification induced by BMP-4, demineralized bone matrix, and trauma in an animal model. J Bone Joint Surg Am 86-A(1):80–91

    PubMed  Google Scholar 

  29. Deasy BM et al (2009) Effect of VEGF on the regenerative capacity of muscle stem cells in dystrophic skeletal muscle. Mol Ther 17(10):1788–1798

    Article  PubMed  CAS  Google Scholar 

  30. Peng H et al (2005) VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis. J Bone Miner Res 20(11):2017–2027

    Article  PubMed  CAS  Google Scholar 

  31. Chirieleison SM et al (2012) Human muscle-derived cell populations isolated by differential adhesion rates: phenotype and contribution to skeletal muscle regeneration in Mdx/SCID mice. Tissue Eng Part A 18(3–4):232–241

    Article  PubMed  CAS  Google Scholar 

  32. Okada M et al (2012) Human skeletal muscle cells with a slow adhesion rate after isolation and an enhanced stress resistance improve function of ischemic hearts. Mol Ther 20(1):138–145

    Article  PubMed  CAS  Google Scholar 

  33. Torrente Y et al (2001) Intraarterial injection of muscle-derived CD34(+)Sca-1(+) stem cells restores dystrophin in mdx mice. J Cell Biol 152(2):335–348

    Article  PubMed  CAS  Google Scholar 

  34. Lee JY et al (2000) Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. J Cell Biol 150(5):1085–1100

    Article  PubMed  CAS  Google Scholar 

  35. Wright V et al (2002) BMP4-expressing muscle-derived stem cells differentiate into osteogenic lineage and improve bone healing in immunocompetent mice. Mol Ther 6(2):169–178

    Article  PubMed  CAS  Google Scholar 

  36. Kuroda R et al (2006) Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis Rheum 54(2):433–442

    Article  PubMed  CAS  Google Scholar 

  37. Aguiari P et al (2008) High glucose induces adipogenic differentiation of muscle-derived stem cells. Proc Natl Acad Sci USA 105(4):1226–1231

    Article  PubMed  CAS  Google Scholar 

  38. Arriero M et al (2004) Adult skeletal muscle stem cells differentiate into endothelial lineage and ameliorate renal dysfunction after acute ischemia. Am J Physiol Renal Physiol 287(4):F621–F627

    Article  PubMed  CAS  Google Scholar 

  39. Jackson KA et al (1999) Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci USA 96(25):14482–14486

    Article  PubMed  CAS  Google Scholar 

  40. Romero-Ramos M et al (2002) Neuronal differentiation of stem cells isolated from adult muscle. J Neurosci Res 69(6):894–907

    Article  PubMed  CAS  Google Scholar 

  41. Vourc’h P et al (2004) Isolation and characterization of cells with neurogenic potential from adult skeletal muscle. Biochem Biophys Res Commun 317(3):893–901

    Article  PubMed  Google Scholar 

  42. Winitsky SO et al (2005) Adult murine skeletal muscle contains cells that can differentiate into beating cardiomyocytes in vitro. PLoS Biol 3(4):e87

    Article  PubMed  Google Scholar 

  43. Arsic N et al (2008) Muscle-derived stem cells isolated as non-adherent population give rise to cardiac, skeletal muscle and neural lineages. Exp Cell Res 314(6):1266–1280

    Article  PubMed  CAS  Google Scholar 

  44. Tamaki T et al (2002) Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle. J Cell Biol 157(4):571–577

    Article  PubMed  CAS  Google Scholar 

  45. Cao B et al (2003) Muscle stem cells differentiate into haematopoietic lineages but retain myogenic potential. Nat Cell Biol 5(7):640–646

    Article  PubMed  CAS  Google Scholar 

  46. Lee JY et al (2001) Effect of bone morphogenetic protein-2-expressing muscle-derived cells on healing of critical-sized bone defects in mice. J Bone Joint Surg Am 83-A(7):1032–1039

    PubMed  CAS  Google Scholar 

  47. Matsumoto T et al (2009) Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble Flt-1. Arthritis Rheum 60(5):1390–1405

    Article  PubMed  Google Scholar 

  48. Oshima H et al (2005) Differential myocardial infarct repair with muscle stem cells compared to myoblasts. Mol Ther 12(6):1130–1141

    Article  PubMed  CAS  Google Scholar 

  49. Payne TR et al (2005) Regeneration of dystrophin-expressing myocytes in the mdx heart by skeletal muscle stem cells. Gene Ther 12(16):1264–1274

    Article  PubMed  CAS  Google Scholar 

  50. Lee JY et al (2003) The effects of periurethral muscle-derived stem cell injection on leak point pressure in a rat model of stress urinary incontinence. Int Urogynecol J Pelvic Floor Dysfunct 14(1):31–37, discussion 37

    Article  PubMed  CAS  Google Scholar 

  51. Cannon TW et al (2003) Improved sphincter contractility after allogenic muscle-derived progenitor cell injection into the denervated rat urethra. Urology 62(5):958–963

    Article  PubMed  Google Scholar 

  52. Chermansky CJ et al (2004) Intraurethral muscle-derived cell injections increase leak point pressure in a rat model of intrinsic sphincter deficiency. Urology 63(4):780–785

    Article  PubMed  Google Scholar 

  53. Kwon D et al (2006) Periurethral cellular injection: comparison of muscle-derived progenitor cells and fibroblasts with regard to efficacy and tissue contractility in an animal model of stress urinary incontinence. Urology 68(2):449–454

    Article  PubMed  Google Scholar 

  54. Gussoni E et al (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401(6751):390–394

    PubMed  CAS  Google Scholar 

  55. Jankowski RJ et al (2001) Flow cytometric characterization of myogenic cell populations obtained via the preplate technique: potential for rapid isolation of muscle-derived stem cells. Hum Gene Ther 12(6):619–628

    Article  PubMed  CAS  Google Scholar 

  56. Sherley JL et al (1995) A quantitative method for the analysis of mammalian cell proliferation in culture in terms of dividing and non-dividing cells. Cell Prolif 28(3):137–144

    Article  PubMed  CAS  Google Scholar 

  57. Deasy BM et al (2003) Modeling stem cell population growth: incorporating terms for proliferative heterogeneity. Stem Cells 21(5):536–545

    Article  PubMed  CAS  Google Scholar 

  58. Hoffman EP et al (1987) Conservation of the Duchenne muscular dystrophy gene in mice and humans. Science 238(4825):347–350

    Article  PubMed  CAS  Google Scholar 

  59. d’Albis A et al (1988) Regeneration after cardiotoxin injury of innervated and denervated slow and fast muscles of mammals. Myosin isoform analysis. Eur J Biochem 174(1):103–110

    Article  PubMed  Google Scholar 

  60. Matsuura T et al (2007) Skeletal muscle fiber type conversion during the repair of mouse soleus: potential implications for muscle healing after injury. J Orthop Res 25(11):1534–1540

    Article  PubMed  CAS  Google Scholar 

  61. Lavasani M et al (2006) Nerve growth factor improves the muscle regeneration capacity of muscle stem cells in dystrophic muscle. Hum Gene Ther 17(2):180–192

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by multiple institutes throughout many years including the National Institutes of Health, the US Department of Defense, the Muscular Dystrophy Association, the University of Pittsburgh Cancer Institute, and generous support from the William F. and Jean W. Donaldson Endowed Chair at the Children’s Hospital of Pittsburgh of UPMC, and the Henry J. Mankin Endowed Chair for Orthopaedic Research at the University of Pittsburgh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura J. Niedernhofer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lavasani, M., Lu, A., Thompson, S.D., Robbins, P.D., Huard, J., Niedernhofer, L.J. (2013). Isolation of Muscle-Derived Stem/Progenitor Cells Based on Adhesion Characteristics to Collagen-Coated Surfaces. In: Turksen, K. (eds) Stem Cells and Aging. Methods in Molecular Biology, vol 976. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-317-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-317-6_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-316-9

  • Online ISBN: 978-1-62703-317-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics