Skip to main content

13C-Based Metabolic Flux Analysis: Fundamentals and Practice

  • Protocol
  • First Online:
Systems Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 985))

Abstract

Isotope-based metabolic flux analysis is one of the emerging technologies applied to system level metabolic phenotype characterization in metabolic engineering. Among the developed approaches, 13C-based metabolic flux analysis has been established as a standard tool and has been widely applied to quantitative pathway characterization of diverse biological systems. To implement 13C-based metabolic flux analysis in practice, comprehending the underlying mathematical and computational modeling fundamentals is of importance along with carefully conducted experiments and analytical measurements. Such knowledge is also crucial when designing 13C-labeling experiments and properly acquiring key data sets essential for in vivo flux analysis implementation.

In this regard, the modeling fundamentals of 13C-labeling systems and analytical data processing are the main topics we will deal with in this chapter. Along with this, the relevant numerical optimization techniques are addressed to help implementation of the entire computational procedures aiming at 13C-based metabolic flux analysis in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadilla J, Teisan S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, Van Dien S (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452

    Article  CAS  Google Scholar 

  2. Wiechert W (2001) 13C metabolic flux analysis. Metab Eng 3:195–206

    Article  CAS  Google Scholar 

  3. Zupke C, Stephanopoulos G (1994) Modeling of isotope distributions and intracellular fluxes in metabolic networks using atom mapping matrixes. Biotechnol Prog 10:489–498

    Article  CAS  Google Scholar 

  4. Ravikirthi P, Suthers PF, Maranas CD (2011) Construction of an E. coli genome-scale atom mapping model for MFA calculations. Biotechnol Bioeng 108:1372–1382

    Article  CAS  Google Scholar 

  5. Hellerstein MK, Neese RA (1999) Mass isotopomer distribution analysis at eight years: theoretical, analytic, and experimental considerations. Am J Physiol 276:E1146–E1170

    CAS  Google Scholar 

  6. Schmidt K, Carlsen M, Nielsen J, Villadsen J (1997) Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrixes. Biotechnol Bioeng 55:831–840

    Article  CAS  Google Scholar 

  7. Christensen B, Nielsen J (1999) Isotopomer analysis using GC-MS. Metab Eng 1:282–290

    Article  CAS  Google Scholar 

  8. Choi J, Antoniewicz MR (2010) Tandem mass spectrometry: a novel approach for metabolic flux analysis. Metab Eng 13:225–233

    Article  Google Scholar 

  9. Rosman KJR, Taylor PDP (1998) Isotopic compositions of the elements 1997. J Phys Chem Ref Data 27(6):1275–1287

    Article  CAS  Google Scholar 

  10. Pingitore F, Tang Y, Kruppa GH, Keasling JD (2007) Analysis of amino acid isotopomers using FT-ICR MS. Anal Chem 79:2483–2490

    Article  CAS  Google Scholar 

  11. Sonntag K, Schwinde J, de Graaf A, Marx A, Eikmanns B, Wiechert W, Sahm H (1995) 13C NMR studies of the fluxes in the central metabolism of Corynebacterium glutamicum during growth and overproduction of amino acids in batch cultures. Appl Microbiol Biotechnol 44:489–495

    Article  CAS  Google Scholar 

  12. Yang TH, Bolten CJ, Coppi MV, Sun J, Heinzle E (2009) Numerical bias estimation for mass spectrometric mass isotopomer analysis. Anal Biochem 388:192–203

    Article  CAS  Google Scholar 

  13. Crawford JM, Blum JJ (1983) Quantitative analysis of flux along the gluconeogenic, glycolytic and pentose phosphate pathways under reducing conditions in hepatocytes isolated from fed rats. Biochem J 212:585–598

    CAS  Google Scholar 

  14. Baranyai JM, Blum JJ (1989) Quantitative analysis of intermediary metabolism in rat hepatocytes incubated in the presence and absence of ethanol with a substrate mixture including ketoleucine. Biochem J 258:121–140

    CAS  Google Scholar 

  15. Rognstad R, Katz J (1972) Gluconeogenesis in the kidney cortex. Quantitative estimation of carbon flow. J Biol Chem 247:6047–6054

    CAS  Google Scholar 

  16. Walsh K, Koshland DE Jr (1984) Determination of flux through the branch point of two metabolic cycles. The tricarboxylic acid cycle and the glyoxylate shunt. J Biol Chem 259:9646–9654

    CAS  Google Scholar 

  17. Kelleher JK (1985) Analysis of tricarboxylic acid cycle using [14C]citrate specific activity ratios. Am J Physiol 248:E252–E260

    CAS  Google Scholar 

  18. Katz J (1985) Determination of gluconeogenesis in vivo with 14C-labeled substrates. Am J Physiol 248:R391–R399

    CAS  Google Scholar 

  19. Goebel R, Berman M, Foster D (1982) Mathematical model for the distribution of isotopic carbon atoms through the tricarboxylic acid cycle. Fed Proc 41:96–103

    CAS  Google Scholar 

  20. Christensen B, Gombert AK, Nielsen J (2002) Analysis of flux estimates based on (13)C-labelling experiments. Eur J Biochem 269:2795–2800

    Article  CAS  Google Scholar 

  21. Wiechert W, Mollney M, Isermann N, Wurzel M, de Graaf AA (1999) Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems. Biotechnol Bioeng 66:69–85

    Article  CAS  Google Scholar 

  22. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng 9:68–86

    Article  CAS  Google Scholar 

  23. Srour O, Young JD, Eldar YC (2011) Fluxomers: a new approach for 13C metabolic flux analysis. BMC Syst Biol 5:129

    Article  CAS  Google Scholar 

  24. Yang TH, Frick O, Heinzle E (2008) Hybrid optimization for 13C metabolic flux analysis using systems parametrized by compactification. BMC Syst Biol 2:29

    Article  Google Scholar 

  25. Mollney M, Wiechert W, Kownatzki D, de Graaf AA (1999) Bidirectional reaction steps in metabolic networks: IV. Optimal design of isotopomer labeling experiments. Biotechnol Bioeng 66:86–103

    Article  CAS  Google Scholar 

  26. Young JD, Walther JL, Antoniewicz MR, Yoo H, Stephanopoulos G (2008) An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis. Biotechnol Bioeng 99:686–699

    Article  CAS  Google Scholar 

  27. Noh K, Gronke K, Luo B, Takors R, Oldiges M, Wiechert W (2007) Metabolic flux analysis at ultra short time scale: isotopically non-stationary 13C labeling experiments. J Biotechnol 129:249–267

    Article  Google Scholar 

  28. Wiechert W, Noh K (2005) From stationary to instationary metabolic flux analysis. Adv Biochem Eng Biotechnol 92:145–172

    CAS  Google Scholar 

  29. Young JD, Shastri AA, Stephanopoulos G, Morgan JA (2011) Mapping photoautotrophic metabolism with isotopically nonstationary (13)C flux analysis. Metab Eng 13:656–665

    Article  CAS  Google Scholar 

  30. Bolten CJ, Kiefer P, Letisse F, Portais JC, Wittmann C (2007) Sampling for metabolome analysis of microorganisms. Anal Chem 79:3843–3849

    Article  CAS  Google Scholar 

  31. Wahl SA, Noh K, Wiechert W (2008) 13C labeling experiments at metabolic nonstationary conditions: an exploratory study. BMC Bioinformatics [electronic resource] 9:152

    Article  Google Scholar 

  32. Fischer E, Sauer U (2003) Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. Eur J Biochem 270:880–891

    Article  CAS  Google Scholar 

  33. Zamboni N, Fischer E, Sauer U (2005) FiatFlux—a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinformatics [electronic resource] 6:209

    Article  Google Scholar 

  34. Rantanen A, Rousu J, Jouhten P, Zamboni N, Maaheimo H, Ukkonen E (2008) An analytic and systematic framework for estimating metabolic flux ratios from 13C tracer experiments. BMC Bioinformatics [electronic resource] 9:266

    Article  Google Scholar 

  35. Floudas CA, Pardalos PM (1992) Recent advances in global optimization. Princeton University Press, Princeton, NJ

    Google Scholar 

  36. Nocedal J, Wright SJ (1999) Numerical optimization. Springer, New York

    Book  Google Scholar 

  37. Press WH (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge; New York

    Google Scholar 

  38. Schmidt K, Nielsen J, Villadsen J (1999) Quantitative analysis of metabolic fluxes in Escherichia coli, using two-dimensional NMR spectroscopy and complete isotopomer models. J Biotechnol 71:175–189

    Article  CAS  Google Scholar 

  39. Brackin P, Colton SC (2002) Using genetic algorithms to set target values for engineering characteristics in the house of quality. J Comput Inf Sci Eng 2:106–114

    Article  Google Scholar 

  40. Kelner V, Capitanescu F, Léonard O, Wehenkel L (2008) An hybrid optimization technique coupling an evolutionary and a local search algorithm. J Comput Appl Math 215(2):448–456

    Article  Google Scholar 

  41. Lambert TW, Hittle DC (2000) Optimization of autonomous village electrification systems by simulated annealing. Sol Energy 68:121–132

    Article  Google Scholar 

  42. Mendes P, Kell D (1998) Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics (Oxford, England) 14:869–883

    Article  CAS  Google Scholar 

  43. Moles CG, Mendes P, Banga JR (2003) Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res 13:2467–2474

    Article  CAS  Google Scholar 

  44. Xu P (2003) A hybrid global optimization method: the multi-dimensional case. J Comput Appl Math 155:423–446

    Article  Google Scholar 

  45. Long CE, Polisetty PK, Gatzke EP (2006) Nonlinear model predictive control using deterministic global optimization. J Process Contr 16:635–643

    Article  CAS  Google Scholar 

  46. Nash SG, Sofer A (1996) Linear and nonlinear programming. McGraw-Hill, New York

    Google Scholar 

  47. Hill MC, Osterby O (2003) Determining extreme parameter correlation in ground water models. Ground Water 41:420–430

    Article  CAS  Google Scholar 

  48. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2006) Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab Eng 8:324–337

    Article  CAS  Google Scholar 

  49. Wittmann C (2007) Fluxome analysis using GC-MS. Microb Cell Fact 6:6

    Article  Google Scholar 

  50. Krömer JO, Fritz M, Heinzle E, Wittmann C (2005) In vivo quantification of intracellular amino acids and intermediates of the methionine pathway in Corynebacterium glutamicum. Anal Biochem 340:171–173

    Article  Google Scholar 

  51. Yang TH, Heinzle E, Wittmann C (2005) Theoretical aspects of 13C metabolic flux analysis with sole quantification of carbon dioxide labeling. Comput Biol Chem 29:121–133

    Article  CAS  Google Scholar 

  52. Yang TH, Wittmann C, Heinzle E (2006) Respirometric 13C flux analysis—Part II: in vivo flux estimation of lysine-producing Corynebacterium glutamicum. Metab Eng 8:432–446

    Article  CAS  Google Scholar 

  53. Rabinowitz JD, Kimball E (2007) Acidic acetonitrile for cellular metabolome extraction from Escherichia coli. Anal Chem 79:6167–6173

    Article  CAS  Google Scholar 

  54. Canelas AB, ten Pierick A, Ras C, Seifar RM, van Dam JC, van Gulik WM, Heijnen JJ (2009) Quantitative evaluation of intracellular metabolite extraction techniques for yeast metabolomics. Anal Chem 81:7379–7389

    Article  CAS  Google Scholar 

  55. Antoniewicz MR, Kraynie DF, Laffend LA, Gonzalez-Lergier J, Kelleher JK, Stephanopoulos G (2007) Metabolic flux analysis in a nonstationary system: fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol. Metab Eng 9(3):277–292

    Article  CAS  Google Scholar 

  56. Lee WN, Bergner EA, Guo ZK (1992) Mass isotopomer pattern and precursor-product relationship. Biol Mass Spectrom 21:114–122

    Article  CAS  Google Scholar 

  57. Wahl SA, Dauner M, Wiechert W (2004) New tools for mass isotopomer data evaluation in 13C flux analysis: mass isotope correction, data consistency checking, and precursor relationships. Biotechnol Bioeng 85:259–268

    Article  CAS  Google Scholar 

  58. Fernandez CA, Des Rosiers C, Previs SF, David F, Brunengraber H (1996) Correction of 13C mass isotopomer distributions for natural stable isotope abundance. J Mass Spectrom 31:255–262

    Article  CAS  Google Scholar 

  59. van Winden WA, Wittmann C, Heinzle E, Heijnen JJ (2002) Correcting mass isotopomer distributions for naturally occurring isotopes. Biotechnol Bioeng 80:477–479

    Article  Google Scholar 

  60. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Accurate assessment of amino acid mass isotopomer distributions for metabolic flux analysis. Anal Chem 79:7554–7559

    Article  CAS  Google Scholar 

  61. Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5:264–276

    Article  CAS  Google Scholar 

  62. Yang TH, Coppi MV, Lovley DR, Sun J (2010) Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation. Microb Cell Fact 9:90

    Article  CAS  Google Scholar 

  63. Massart DL (1997) Handbook of chemometrics and qualimetrics. Elsevier, Amsterdam; New York

    Google Scholar 

  64. Arnold SF (1990) Mathematical statistics. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  65. Wiechert W, Siefke C, de Graaf A, Marx A (1997) Bidirectional reaction steps in metabolic networks: II. Flux estimation and statistical analysis. Biotechnol Bioeng 55(1):118–135

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Hoon Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yang, T.H. (2013). 13C-Based Metabolic Flux Analysis: Fundamentals and Practice. In: Alper, H. (eds) Systems Metabolic Engineering. Methods in Molecular Biology, vol 985. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-299-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-299-5_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-298-8

  • Online ISBN: 978-1-62703-299-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics