Skip to main content

Isolation of the Postsynaptic Density: A Specialization of the Subsynaptic Cytoskeleton

  • Protocol
  • First Online:
The Cytoskeleton

Part of the book series: Neuromethods ((NM,volume 79))

Abstract

Postsynaptic densities (PSDs) are cytoskeletal specializations present in synaptic contacts in the central nervous system. PSDs have been considered to be subcellular organelles that maintain and cluster the synaptic signal transduction apparatus in direct contact with the actin cytoskeleton and its regulators. Synapses and PSDs are highly dynamic structures that in addition of subserving transmission of information participate in its processing and storage. Therefore, the molecular components of PSDs reveal their signal transduction capacities in health and disease. Here, we present the experimental protocol we have been using for years to isolate PSDs from other cell components, including or excluding detergent-­resistant membranes (or lipid rafts). The protocol can be applied to brain samples of different areas, ages, and mammalian species and is useful to obtain this subcellular organelle in a highly reproducible manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boeckers TM (2006) The postsynaptic density. Cell Tissue Res 326(2):409–422

    Article  PubMed  CAS  Google Scholar 

  2. Ziff EB (1997) Enlightening the postsynaptic density. Neuron 19(6):1163–1174

    Article  PubMed  CAS  Google Scholar 

  3. Wyneken U et al (2001) Kainate-induced seizures alter protein composition and N-methyl-D-aspartate receptor function of rat forebrain postsynaptic densities. Neuroscience 102(1):65–74

    Article  PubMed  CAS  Google Scholar 

  4. Ehlers MD (2003) Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci 6(3):231–242

    Article  PubMed  CAS  Google Scholar 

  5. Dillon C, Goda Y (2005) The actin cytoskeleton: integrating form and function at the synapse. Annu Rev Neurosci 28:25–55

    Article  PubMed  CAS  Google Scholar 

  6. van Spronsen M, Hoogenraad CC (2010) Synapse pathology in psychiatric and neurologic disease. Curr Neurol Neurosci Rep 10(3):207–214

    Article  PubMed  Google Scholar 

  7. Boda B, Dubos A, Muller D (2010) Signaling mechanisms regulating synapse formation and function in mental retardation. Curr Opin Neurobiol 20(4):519–527

    Article  PubMed  CAS  Google Scholar 

  8. Bamburg JR, Bloom GS (2009) Cytoskeletal pathologies of Alzheimer disease. Cell Motil Cytoskeleton 66(8):635–649

    Article  PubMed  CAS  Google Scholar 

  9. Cheng D et al (2006) Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. Mol Cell Proteomics 5(6):1158–1170

    Article  PubMed  CAS  Google Scholar 

  10. Collins MO et al (2006) Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. J Neurochem 97(Suppl 1):16–23

    Article  PubMed  CAS  Google Scholar 

  11. Collins MO et al (2005) Proteomic analysis of in vivo phosphorylated synaptic proteins. J Biol Chem 280(7):5972–5982

    Article  PubMed  CAS  Google Scholar 

  12. Dosemeci A, Tao-Cheng JH, Vinade L, Jaffe H (2006) Preparation of postsynaptic density fraction from hippocampal slices and proteomic analysis. Biochem Biophys Res Commun 339(2):687–694

    Article  PubMed  CAS  Google Scholar 

  13. Jordan BA et al (2004) Identification and verification of novel rodent postsynaptic density proteins. Mol Cell Proteomics 3(9):857–871

    Article  PubMed  CAS  Google Scholar 

  14. Li K et al (2005) Organelle proteomics of rat synaptic proteins: correlation-profiling by isotope-coded affinity tagging in conjunction with liquid chromatography-tandem mass spectrometry to reveal post-synaptic density specific proteins. J Proteome Res 4(3):725–733

    Article  PubMed  CAS  Google Scholar 

  15. Li KW et al (2004) Proteomics analysis of rat brain postsynaptic density. Implications of the diverse protein functional groups for the integration of synaptic physiology. J Biol Chem 279(2):987–1002

    Article  PubMed  CAS  Google Scholar 

  16. Peng J et al (2004) Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J Biol Chem 279(20):21003–21011

    Article  PubMed  CAS  Google Scholar 

  17. Yoshimura Y et al (2004) Molecular constituents of the postsynaptic density fraction revealed by proteomic analysis using multidimensional liquid chromatography-tandem mass spectrometry. J Neurochem 88(3):759–768

    Article  PubMed  CAS  Google Scholar 

  18. Carlin RK, Grab DJ, Cohen RS, Siekevitz P (1980) Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities. J Cell Biol 86(3):831–845

    Article  PubMed  CAS  Google Scholar 

  19. Akert K, Moor H, Pfenninger K, Sandri C (1969) Contributions of new impregnation methods and freeze etching to the problems of synaptic fine structure. Prog Brain Res 31:223–240

    Article  PubMed  CAS  Google Scholar 

  20. Palay SL, Palade GE (1955) The fine structure of neurons. J Biophys Biochem Cytol 1(1):69–88

    Article  PubMed  CAS  Google Scholar 

  21. De Robertis E (1959) Submicroscopic morphology of the synapse. Int Rev Cytol 8:61–96

    Article  Google Scholar 

  22. Gray EG (1959) Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex. Nature 183(4675):1592–1593

    Article  PubMed  CAS  Google Scholar 

  23. Gray EG, Whittaker VP (1962) The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J Anat 96:79–88

    PubMed  CAS  Google Scholar 

  24. Cotman CW, Taylor D (1974) Localization and characterization of concanavalin A receptors in the synaptic cleft. J Cell Biol 62(1):236–242

    Article  PubMed  CAS  Google Scholar 

  25. Cotman CW, Banker G, Churchill L, Taylor D (1974) Isolation of postsynaptic densities from rat brain. J Cell Biol 63(2 Pt 1):441–455

    Article  PubMed  CAS  Google Scholar 

  26. Matus AI, Walters BB (1975) Ultrastructure of the synaptic junctional lattice isolated from mammalian brain. J Neurocytol 4(3):369–375

    Article  PubMed  CAS  Google Scholar 

  27. Cohen RS, Blomberg F, Berzins K, Siekevitz P (1977) The structure of postsynaptic densities isolated from dog cerebral cortex. I. Overall morphology and protein composition. J Cell Biol 74(1):181–203

    Article  PubMed  CAS  Google Scholar 

  28. Matus A, Ackermann M, Pehling G (1981) Regularity and differentiation within the structure of brain postsynaptic densities. J Neurocytol 10(6):889–896

    Article  PubMed  CAS  Google Scholar 

  29. Phillips GR et al (2001) The presynaptic particle web: ultrastructure, composition, dissolution, and reconstitution. Neuron 32(1):63–77

    Article  PubMed  CAS  Google Scholar 

  30. Hunsucker SW et al (2008) Assessment of post-mortem-induced changes to the mouse brain proteome. J Neurochem 105(3):725–737

    Article  PubMed  CAS  Google Scholar 

  31. Walikonis RS et al (2000) Identification of proteins in the postsynaptic density fraction by mass spectrometry. J Neurosci 20(11):4069–4080

    PubMed  CAS  Google Scholar 

  32. Frezza C, Cipolat S, Scorrano L (2007) Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat Protoc 2(2):287–295

    Article  PubMed  CAS  Google Scholar 

  33. De Robertis ED (1965) Some new electron microscopical contributions to the biology of neuroglia. Prog Brain Res 15:1–11

    Article  PubMed  Google Scholar 

  34. Trinidad JC, Thalhammer A, Specht CG, Schoepfer R, Burlingame AL (2005) Phosphorylation state of postsynaptic density proteins. J Neurochem 92(6):1306–1316

    Article  PubMed  CAS  Google Scholar 

  35. Whittaker VP, Gray EG (1962) The synapse: biology and morphology. Br Med Bull 18:223–228

    PubMed  CAS  Google Scholar 

  36. Suzuki T et al (2011) Association of ­membrane rafts and postsynaptic density: proteomics, biochemical, and ultrastructural analyses. J Neurochem 119(1):64–77

    Article  PubMed  CAS  Google Scholar 

  37. Pielot R, Smalla KH, Müller A, Landgraf P, Lehmann AC, Eisenschmidt E, Haus UU, Weismantel R, Gundelfinger ED, Dieterich DC (2012) SynProt: A Database for Proteins of Detergent-resistant Synaptic Protein Preparations. Front Syn Neurosci 4:1. doi: 10.3389/fnsyn.2012.00001.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported to KHS and UW by bilateral programs of the Deutsche Forschungsgemeinschaft (DFG SM38/8-1) and Bundesministerium für Bildung und Forschung (BMBF CHL 06/027) with Conicyt (Chile), to UW by Fondecyt(1100322) and Proyecto Anillo 09–06 (PBCT, Conicyt Chile), and to KHS by the European Structural Funds 2007–2013 (CBBS/ZVOH). PK was supported by DFG as a guest scientist within the SFB 779.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Heinz Smalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Smalla, KH., Klemmer, P., Wyneken, U. (2013). Isolation of the Postsynaptic Density: A Specialization of the Subsynaptic Cytoskeleton. In: Dermietzel, R. (eds) The Cytoskeleton. Neuromethods, vol 79. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-266-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-266-7_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-265-0

  • Online ISBN: 978-1-62703-266-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics