Skip to main content

Zebrafish as a Model System to Study Heritable Skin Diseases

  • Protocol
  • First Online:
Molecular Dermatology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 961))

Abstract

Heritable skin diseases represent a broad spectrum of clinical manifestations due to mutations in ∼500 different genes. A number of model systems have been developed to advance our understanding of the pathomechanisms of genodermatoses. Zebrafish (Danio rerio), a freshwater vertebrate, has a well-characterized genome, the expression of which can be easily manipulated. The larvae develop rapidly, with all major organs having largely developed by 5–6 days post-fertilization, including the skin which consists at that stage of the epidermis comprising two cell layers and separated from the dermal collagenous matrix by a basement membrane zone. Here, we describe the use of morpholino-based antisense oligonucleotides to knockdown the expression of specific genes in zebrafish and to examine the consequent knockdown efficiency and skin phenotypes. Zebrafish can provide a useful model system to study heritable skin diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lieschke G, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nature Rev Genet 8:353–367

    Article  PubMed  CAS  Google Scholar 

  2. Li Q, Uitto J (2010) The mineralization phenotype in Abcc6−/− mice is affected by Ggcx gene deficiency and genetic background—a model for pseudoxanthoma elasticum. J Mol Med 88:173–181

    Article  PubMed  CAS  Google Scholar 

  3. Hovnanian A (2010) Modifier genes in pseudoxanthoma elasticum: novel insights from the Ggcx mouse model. J Mol Med 88:149–153

    Article  PubMed  Google Scholar 

  4. Li CF, MacDonald JR, Wei RY, Ray J, Lau K, Kandel C, Koffman R, Bell S, Scherer SW, Alman BA (2007) Human sterile alpha motif domain 9, a novel gene identified as down-regulated in aggressive fibromatosis, is absent in the mouse. BMC Genomics 8:92

    Article  PubMed  Google Scholar 

  5. Sprecher E (2010) Familial tumoral calcinosis: from characterization of a rare phenotype to the pathogenesis of ectopic calcification. J Invest Dermatol 130:652–660

    Article  PubMed  CAS  Google Scholar 

  6. Vanchieri C (2001) Move over, mouse: make way for the woodchucks, ferrets, and zebrafish. J Natl Cancer Inst 93:418–419

    Article  PubMed  CAS  Google Scholar 

  7. Li Q, Frank M, Thisse C, Thisse B, Uitto J (2011) Zebrafish: a model system to study heritable skin diseases. J Invest Dermatol 131:565–571

    Article  PubMed  CAS  Google Scholar 

  8. Le GD, Morvan-Dubois G, Sire JY (2004) Skin development in bony fish with particular emphasis on collagen deposition in the dermis of the zebrafish (Danio rerio). Int J Dev Biol 48:217–231

    Article  Google Scholar 

  9. Sonawane M, Carpio Y, Geisler R, Schwarz H, Maischein HM, Nuesslein-Volhard C (2005) Zebrafish penner/lethal giant larvae 2 functions in hemidesmosome formation, maintenance of cellular morphology and growth regulation in the developing basal epidermis. Development 32:3255–3265

    Article  Google Scholar 

  10. Sire JY, Akimendo MA (2004) Scale development in fish: a review, with description of sonic hedgehog (shh) expression in the zebrafish (Danio rerio). Int J Dev Biol 48:233–247

    Article  PubMed  CAS  Google Scholar 

  11. O’Reilly-Pol T, Johnson SL (2009) Melanocyte regeneration reveals mechanisms of adult stem cell regulation. Semin Cell Dev Biol 20:117–124

    Article  PubMed  Google Scholar 

  12. Lee Y, Nachtrab G, Klinsawat PW, Hami D, Poss KD (2010) Ras controls melanocyte expansion during zebrafish fin stripe regeneration. Dis Model Mech 3:496–503

    Article  PubMed  CAS  Google Scholar 

  13. Froehlicher M, Liedtke A, Groh KJ, Neuhauss SC, Segner H, Eggen RI (2009) Zebrafish (Danio rerio) neuromast: promising biological endpoint linking development and toxicological studies. Aquat Toxicol 95:307–319

    Article  PubMed  CAS  Google Scholar 

  14. Westerfield M (2007) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 5th edn. University of Oregon Press, Eugene

    Google Scholar 

  15. Postlethwait JH (2007) The zebrafish genome in context: ohnologs gone missing. J Exp Zool 308B:563–577

    Article  CAS  Google Scholar 

  16. Roch GJ, Wu S, Sherwood NM (2009) Hormones and receptors in fish: do duplicates matter? Gen Comp Endocrinol 161:3–12

    Article  PubMed  CAS  Google Scholar 

  17. Kim SH, Choi HY, So JH, Kim CH, Ho SY, Frank M, Li Q, Uitto J (2010) Zebrafish type XVII collagen: gene structures, expression profiles, and morpholino “knock-down” phenotypes. Matrix Biol 29:629–637

    Article  PubMed  CAS  Google Scholar 

  18. Seppänen A, Autio-Harmainen H, Alafuzoff I, Särkioja T, Veijola J, Hurskainen T, Bruckner-Tuderman L, Tasanen K, Majamaa K (2006) Collagen XVII is expressed in human CNS neurons. Matrix Biol 25:185–188

    Article  PubMed  Google Scholar 

  19. Has C, Kern JS (2010) Collagen XVII. Dermatol Clin 28:61–66

    Article  PubMed  CAS  Google Scholar 

  20. Sprague J, Bayraktaroglu L, Bradford Y et al (2008) The Zebrafish Information Network: the zebrafish model organism database provides expanded support for genotypes and phenotypes. Nucleic Acids Res 36:D768

    Article  PubMed  CAS  Google Scholar 

  21. Eisen JS, Smith JC (2008) Controlling morpholino experiments: don’t stop making antisense. Development 135:1735–1743

    Article  PubMed  CAS  Google Scholar 

  22. Shan G (2010) RNA interference as gene knockdown technique. Int J Biochem Cell Biol 42:1243–1251

    Article  PubMed  CAS  Google Scholar 

  23. Li Q, Frank M, Akiyama M, Shimizu H, Ho SY, Thisse C, Thisse B, Sprecher E, Uitto J (2011) Abca12-mediated lipid transport and Snap29-dependent trafficking of lamellar granules are critical for epidermal morphogenesis in zebrafish disease model of ichthyosis. Dis Model Mech 4:777–785

    Article  PubMed  CAS  Google Scholar 

  24. Robu ME, Larson JD, Nasevicius A, Beriraghi S, Farber SA, Ekker SC (2007) p53 activation by knock down technologies. PLoS Genet 3:e78

    Article  PubMed  Google Scholar 

  25. Jiang Q, Li Q, Uitto J (2007) Aberrant mineralization of connective tissues in a mouse model of pseudoxanthoma elasticum: systemic and local regulatory factors. J Invest Dermatol 127:1392–1402

    Article  PubMed  CAS  Google Scholar 

  26. Li Q, Sadowski S, Frank M, Chai C, Väradi A, Ho SY, Lou H, Dean M, Thisse C, Thisse B, Uitto J (2010) The abcc6a gene expression is required for normal zebrafish development. J Invest Dermatol 130:2561–2568

    Article  PubMed  CAS  Google Scholar 

  27. Peterson RT, Link BA, Dowling JE, Schreiber SL (2000) Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc Natl Acad Sci U S A 97:12965–12969

    Article  PubMed  CAS  Google Scholar 

  28. Burns CG, Milan DJ, Grande EJ, Rottbauer W, MacRae CA, Fishman MC (2005) High-throughput assay for small molecules that modulate zebrafish embryonic heart rate. Nat Chem Biol 1:263–264

    Article  PubMed  CAS  Google Scholar 

  29. Weinstein BM, Stemple DL, Driever W, Fishman MC (1995) Gridlock, a localized heritable vascular patterning defect in the zebrafish. Nat Med 1:1143–1147

    Article  PubMed  CAS  Google Scholar 

  30. Hong CC, Peterson QP, Hong J, Peterson RT (2006) Artery/vein specification is governed by opposing phosphatidylinositol-3 kinase and MAP kinase/ERK signaling. Curr Biol 16:1366–1372

    Article  PubMed  CAS  Google Scholar 

  31. Peterson RT, Shaw SY, Peterson TA, Milan DJ, Zhong TP, Schreiber SL, MacRae CA, Fishman MC (2004) Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat Biotechnol 22:595–599

    Article  PubMed  CAS  Google Scholar 

  32. Stern HM, Murphey RD, Shepard JL, Amatruda JF, Straub CT, Pfaff KL, Weber G, Tallarico JA, King RW, Zon LI (2005) Small molecules that delay S phase suppress a zebrafish bmyb mutant. Nature Chem Biol 1:366–370

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Jefferson Intramural Pilot Research Award and Dermatology Foundation Research Career Development Award to QL. This manuscript is edited from a perspective article by the authors (7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiaoli Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Li, Q., Uitto, J. (2013). Zebrafish as a Model System to Study Heritable Skin Diseases. In: Has, C., Sitaru, C. (eds) Molecular Dermatology. Methods in Molecular Biology, vol 961. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-227-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-227-8_28

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-226-1

  • Online ISBN: 978-1-62703-227-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics