Skip to main content

Sampling and Analysis of Phloem Sap

  • Protocol
  • First Online:
Plant Mineral Nutrients

Part of the book series: Methods in Molecular Biology ((MIMB,volume 953))

Abstract

The transport tubes of the phloem are essential for higher plants. They not only provide the route for the distribution of assimilates produced during photosynthesis from source to sink organs but also (re-) distribute mineral nutrients. Additionally, the phloem is essential for sending information between distant plant organs and steering developmental and defense processes. For example, flowering and tuberization time are controlled by phloem-mobile signals and important defense reactions on the whole plant level, like systemic acquired resistance or systemic gene silencing, are spread through the phloem. In addition, recent results demonstrate that also the allocation of mineral nutrients is coordinated by phloem mobile signaling molecules.

However, in many studies the important analysis of phloem sap is neglected, probably because the content of sieve tubes is not easy to access. This chapter will describe the current methods for sampling and analysis of phloem sap in order to encourage researchers to include the analysis of this crucial compartment in their relevant studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deeken R, Ache P, Kajahn I, Klinkenberg J, Bringmann G, Hedrich R (2008) Identification of Arabidopsis thaliana phloem RNAs provides a search criterion for phloem-based transcripts hidden in complex datasets of microarray experiments. Plant J 55:746–759

    Article  PubMed  CAS  Google Scholar 

  2. Pritchard J (1996) Aphid stylectomy reveals an osmotic step between sieve tube and cortical cells in barley roots. J Exp Bot 47:1519–1524

    Article  CAS  Google Scholar 

  3. Doering-Saad C, Newbury HJ, Bale JS, Pritchard J (2002) Use of aphid stylectomy and RT-PCR for the detection of transporter mRNAs in sieve elements. J Exp Bot 53:631–637

    Article  PubMed  CAS  Google Scholar 

  4. Gaupels F, Buhtz A, Knauer T, Deshmukh S, Waller F, van Bel AJE, Kogel KH, Kehr J (2008) Adaptation of aphid stylectomy for analyses of proteins and mRNAs in barley phloem sap. J Exp Bot 59:3297–3306

    Article  PubMed  CAS  Google Scholar 

  5. Kawabe S, Bukomorita T, Chino M (1980) Collection of rice phloem sap from stylets of homopterous insect severed by YAG laser. Plant Cell Physiol 21:1319–1327

    CAS  Google Scholar 

  6. Riens B, Lohaus G, Heineke D, Heldt HW (1991) Amino acid and sucrose content determined in the cytosolic, chloroplastic, and vacuolar compartments and in the phloem sap of spinach leaves. Plant Physiol 97:227–233

    Article  PubMed  CAS  Google Scholar 

  7. Lohaus G, Burba M, Heldt HW (1994) Comparison of the contents of sucrose and amino acids in the leaves, phloem sap and taproots of high and low sugar-producing hybrids of sugar beet (Beta vulgaris L.). J Exp Bot 45:1097–1101

    Article  CAS  Google Scholar 

  8. Dinant S, Bonnemain JL, Girousse C, Kehr J (2010) Phloem sap intricacy and interplay with aphid feeding. C R Biologies 333:504–515

    Article  PubMed  Google Scholar 

  9. Brandt S, Kehr J, Walz C, Imlau A, Willmitzer L, Fisahn J (1999) A rapid method for detection of plant gene transcripts from single epidermal, mesophyll and companion cells of intact leaves. Plant J 20:245–250

    Article  PubMed  CAS  Google Scholar 

  10. Raps A, Kehr J, Gugerli P, Moar WJ, Bigler F, Hilbeck A (2001) Immunological analysis of phloem sap of Bacillus thuringiensis corn and of the nontarget herbivore Rhopalosiphum padi (Homoptera: Aphididae) for the presence of Cry1Ab. Mol Ecol 10:525–533

    Article  PubMed  CAS  Google Scholar 

  11. Yu Y, Lashbrook C, Hannapel D (2007) Tissue integrity and RNA quality of laser microdissected phloem of potato. Planta 226:797–803

    Article  PubMed  CAS  Google Scholar 

  12. Asano T, Masumura T, Kusano H, Kikuchi S, Kurita A, Shimada H, Kadowaki K (2002) Construction of a specialized cDNA library from plant cells isolated by laser capture microdissection: toward comprehensive analysis of the genes expressed in the rice phloem. Plant J 32:401–408

    Article  PubMed  CAS  Google Scholar 

  13. Brady SM, Orlando DA, Lee JY, Wang JY, Koch J, Dinneny JR, Mace D, Ohler U, Benfey PN (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–806

    Article  PubMed  CAS  Google Scholar 

  14. Lyer-Pascuzzi AS, Benfey PN (2010) Fluorescence-activated cell sorting. In: Hennig L, Köhler C (eds) Plant developmental biology. pp 313–319

    Google Scholar 

  15. Bose JC (1947) Plants and their autographs. Longman Green & Co., London

    Google Scholar 

  16. Zimmermann MH, Ziegler H (1975) List of sugars and sugar alcohols in sieve-tube exudates. In: Zimmermann MH, Milburn JA (eds) Encyclopedia of plant physiology. Springer, Berlin, pp 480–503

    Google Scholar 

  17. Milburn JA (1970) Phloem exudation from castor bean: induction by massage. Planta 95:272–276

    Article  Google Scholar 

  18. Alosi MC, Melroy DL, Park RB (1988) The regulation of gelation of phloem exudate from cucurbita fruit by dilution, glutathione, and glutathione reductase. Plant Physiol 86:1089–1094

    Article  PubMed  CAS  Google Scholar 

  19. Yoo B, Kragler F, Varkonyi-Gasic E, Haywood V, Archer-Evans S, Lee YM, Lough TJ, Lucas WJ (2004) A systemic small RNA signaling system in plants. Plant Cell 16:1979–2000

    Article  PubMed  CAS  Google Scholar 

  20. Walz C, Giavalisco P, Schad M, Juenger M, Klose J, Kehr J (2004) Proteomics of curcurbit phloem exudate reveals a network of defense proteins. Phytochemistry 65:1795–1804

    Article  PubMed  CAS  Google Scholar 

  21. Giavalisco P, Kapitza K, Kolasa A, Buhtz A, Kehr J (2006) Towards the proteome of Brassica napus phloem sap. Proteomics 6:896–909

    Article  PubMed  CAS  Google Scholar 

  22. Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr J (2008) Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J 53:739–749

    Article  PubMed  CAS  Google Scholar 

  23. Turgeon R, Wolf S (2009) Phloem transport: cellular pathways and molecular trafficking. Ann Rev Plant Biol 60:207–221

    Article  CAS  Google Scholar 

  24. King RW, Zeevaart JAD (1974) Enhancement of phloem exudation from cut petioles by chelating agents. Plant Physiol 53:96–103

    Article  PubMed  CAS  Google Scholar 

  25. Marentes E, Grusak MA (1998) Mass determination of low-molecular-weight proteins in phloem sap using matrix-assisted laser desorption/ionization time of flight mass spectrometry. J Exp Bot 49:903–911

    CAS  Google Scholar 

  26. Hoffmann-Benning S, Gage DA, McIntosh L, Kende H, Zeevaart JAD (2002) Comparison of peptides in the phloem sap of flowering and non-flowering Perilla and lupine plants using microbore HPLC followed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Planta 216:140–147

    Article  PubMed  CAS  Google Scholar 

  27. Leggewie G, Kolbe A, Lemoine R, Roessner U, Lytovchenko A, Zuther E, Kehr J, Frommer WB, Riesmeier JW, Willmitzer L, Fernie AR (2003) Overexpression of the sucrose transporter SoSUT1 in potato results in alterations in leaf carbon partitioning and in tuber metabolism but has little impact on tuber morphology. Planta 217:158–167

    PubMed  CAS  Google Scholar 

  28. Kennedy JS, Mittler TE (1953) A method of obtaining phloem sap via the mouth parts of aphids. Nature 171:528

    Article  Google Scholar 

  29. van Bel AJE, Knoblauch M, Furch ACU, Hafke JB (2011) Question(s) on phloem biology. 1. Electropotential waves, Ca2+ fluxes and cellular cascades along the propagation pathway. Plant Sci 181:210–218

    Article  PubMed  Google Scholar 

  30. Fisher DB, Frame JM (1984) A guide to the use of the exuding-stylet technique in phloem physiology. Planta 161:385–393

    Article  Google Scholar 

  31. Downing N, Unwin DM (1977) A new method for cutting the mouthparts of feeding aphids. Physiol Entomol 2:275–277

    Article  Google Scholar 

  32. Barlow CA, McCully ME (1972) The ruby laser as an instrument for cutting the stylets of feeding aphids. Can J Zool 50:1497–1498

    Article  Google Scholar 

  33. Kehr J (2006) Phloem sap proteins: their identities and potential roles in the interaction between plants and phloem-feeding insects. J Exp Bot 2006:767–774

    Article  Google Scholar 

  34. Tjallingii WF (2006) Salivary secretions by aphids interacting with proteins of phloem wound responses. J Exp Bot 57:739–745

    Article  PubMed  CAS  Google Scholar 

  35. Will T, Tjallingii WF, Thonnessen A, van Bel AJE (2007) Molecular sabotage of plant defense by aphid saliva. Proc Natl Acad Sci USA 104:10536–10541

    Article  PubMed  CAS  Google Scholar 

  36. Divol F, Vilaine F, Thibivilliers S, Amselem J, Palauqui J, Kusiak C, Dinant S (2005) Systemic response to aphid infestation by Myzus persicae in the phloem of Apium graveolens. Plant Mol Biol 57:517–540

    Article  PubMed  CAS  Google Scholar 

  37. Fiehn O (2003) Metabolic networks of Cucurbita maxima phloem. Phytochemistry 62:875–886

    Article  PubMed  CAS  Google Scholar 

  38. Buhtz A, Pieritz J, Springer F, Kehr J (2010) Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biol 10:64

    Article  PubMed  Google Scholar 

  39. Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, Walther D, Scheible WR (2009) Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol 150:1541–1555

    Article  PubMed  Google Scholar 

  40. Lin MK, Lee YJ, Lough TJ, Phinney BS, Lucas WJ (2009) Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function. Mol Cell Proteomics 8:343–356

    PubMed  CAS  Google Scholar 

  41. Omid A, Keilin T, Glass A, Leshkowitz D, Wolf S (2007) Characterization of phloem-sap transcription profile in melon plants. J Exp Bot 58:3645–3656

    Article  PubMed  CAS  Google Scholar 

  42. Kehr J (2009) Long-distance transport of macromolecules through the phloem. F1000 Biol Rep 1:31

    PubMed  Google Scholar 

  43. Kehr J, Buhtz A (2008) Long distance transport and movement of RNA through the phloem. J Exp Bot 59:85–92

    Article  PubMed  CAS  Google Scholar 

  44. Kragler F (2010) RNA in the phloem: a crisis or a return on investment? Plant Sci 178:99–104

    Article  CAS  Google Scholar 

  45. Ruiz-Medrano R, Xoconostle-Cazares B, Kragler F (2004) The plasmodesmatal transport pathway for homeotic proteins, silencing signals and viruses. Curr Opin Plant Biol 7:641–650

    Article  PubMed  CAS  Google Scholar 

  46. Peuke AD (2010) Correlations in concentrations, xylem and phloem flows, and partitioning of elements and ions in intact plants. A summary and statistical re-evaluation of modeling experiments in Ricinus communis. J Exp Bot 61:635–655

    Article  PubMed  CAS  Google Scholar 

  47. Pant BD, Buhtz A, Kehr J, Scheible WR (2008) MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53:731–738

    Article  PubMed  CAS  Google Scholar 

  48. Zhu X, Shaw PN, Pritchard J, Newbury J, Hunt EJ, Barrett DA (2005) Amino acid analysis by micellar electrokinetic chromatography with laser-induced fluorescence detection: application to nanoliter-volume biological samples from Arabidopsis thaliana and Myzus persicae. Electrophoresis 26:911–919

    Article  PubMed  CAS  Google Scholar 

  49. Arlt K, Brandt S, Kehr J (2001) Amino acid analysis in five pooled single plant cell samples using capillary electrophoresis coupled to laser-induced fluorescence detection. J Chromatogr A 926:319–325

    Article  PubMed  CAS  Google Scholar 

  50. Aki T, Shigyo M, Nakano R, Yoneyama T, Yanagisawa S (2008) Nano scale proteomics revealed the presence of regulatory proteins including three FT-like proteins in phloem and xylem saps from rice. Plant Cell Physiol 49:767–790

    Article  PubMed  CAS  Google Scholar 

  51. Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) A highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12

    Article  PubMed  Google Scholar 

  52. Varkonyi-Gasic E, Gould N, Sandanayaka M, Sutherland P, MacDiarmid RM (2010) Characterization of microRNAs from apple (Malus domestica ‘Royal gala’) vascular tissue and phloem sap. BMC Plant Biol 10:159

    Article  PubMed  Google Scholar 

  53. Walz C, Juenger M, Schad M, Kehr J (2002) Evidence for the presence and activity of a complete antioxidant defense system in mature sieve tubes. Plant J 31:189–197

    Article  PubMed  CAS  Google Scholar 

  54. Hocking PJ (1980) The composition of phloem exudate and xylem sap from tree tobacco (Nicotiana glauca Grah.). Ann Bot 45:633–643

    CAS  Google Scholar 

  55. Ruiz-Medrano R, Xoconostle-Cázares B, Lucas WJ (1999) Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development 126:4405–4419

    PubMed  CAS  Google Scholar 

  56. Knoblauch M, van Bel AJE (1998) Sieve tubes in action. Plant Cell 10:35–50

    CAS  Google Scholar 

  57. Doering-Saad C, Newbury HJ, Couldridge CE, Bale JS, Pritchard J (2006) A phloem-enriched cDNA library from ricinus: insights into phloem function. J Exp Bot 57:3183–3193

    Article  PubMed  CAS  Google Scholar 

  58. Mendoza-Cózatl D, Butko E, Springer F, Torpey J, Komives E, Kehr J, Schroeder JI (2008) Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus and role for thiol-peptides in long-distance transport of cadmium. Plant J 54:249–259

    Article  PubMed  Google Scholar 

  59. Schobert C, Baker L, Szederkenyi J, Großmann P, Komor E, Hayashi H (1998) Identification of immunologically related proteins in sieve-tube exudate collected from monocotyledonous and dicotyledonous plants. Planta 206:245–252

    Article  CAS  Google Scholar 

  60. Gaupels F, Knauer T, van Bel AJE (2008) A combinatory approach for analysis of protein sets in barley sieve tube samples using EDTA-facilitated exudation and aphid stylectomy. J Plant Physiol 165:95–103

    Article  PubMed  CAS  Google Scholar 

  61. Girousse C, Bonnemain JL, Delrot S, Bournoville R (1991) Sugar and amino acid composition of phloem sap of Medicago sativa: a comparative study of two collecting methods. Plant Physiol Biochem 29:41–48

    CAS  Google Scholar 

  62. Weibull J, Ronquist F, Brishammar S (1990) Free amino acid composition of leaf exudates and phloem sap. Plant Physiol 92:222–226

    Article  PubMed  CAS  Google Scholar 

  63. Girousse C, Bournoville R, Bonnemain JL (1996) Water deficit-induced changes in concentrations in proline and some other amino acids in the phloem sap of Alfalfa. Plant Physiol 111:109–113

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Kehr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dinant, S., Kehr, J. (2013). Sampling and Analysis of Phloem Sap. In: Maathuis, F. (eds) Plant Mineral Nutrients. Methods in Molecular Biology, vol 953. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-152-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-152-3_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-151-6

  • Online ISBN: 978-1-62703-152-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics