Skip to main content

Present Technology and Future Trends in Point-of-Care Microfluidic Diagnostics

  • Protocol
  • First Online:
Microfluidic Diagnostics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 949))

Abstract

This work reviews present technologies and developing trends in Point-of-Care (POC) microfluidic diagnostics platforms. First, various fluidics technologies such as pressure-driven flows, capillary flows, electromagnetically driven flows, centrifugal fluidics, acoustically driven flows, and droplet fluidics are categorized. Then three broad categories of POC microfluidic testing devices are considered: lateral flow devices, desktop and handheld POC diagnostic platforms, and emergent molecular diagnostic POC systems. Such evolving trends as miniaturization, multiplexing, networking, new more sensitive detection schemes, and the importance of sample processing are discussed. It is concluded that POC microfluidic diagnostics has a potential to improve patient treatment outcome and bring substantial savings in overall healthcare costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term “digital microfluidics” is also used.

References

  1. Madou MJ (2002) Fundamentals of microfabrication: the science of miniaturization. CRC Press, Boca Raton, FL

    Google Scholar 

  2. Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39:1153–1182

    Article  CAS  Google Scholar 

  3. Tudos AJ, Besselink GAJ, Schasfoort RBM (2001) Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab Chip 1:83–95

    Article  CAS  Google Scholar 

  4. Posthuma-Trumpie GA, Korf J, van Amerongen A (2009) Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem 393:569–582

    Article  CAS  Google Scholar 

  5. Nghe P, Terriac E, Schneider M, Li ZZ, Cloitre M, Abecassis B, Tabeling P (2011) Microfluidics and complex fluids. Lab Chip 11:788–794

    Article  CAS  Google Scholar 

  6. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977

    Article  CAS  Google Scholar 

  7. Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7:1094–1110

    Article  CAS  Google Scholar 

  8. Dittrich PS, Tachikawa K, Manz A (2006) Micro total analysis systems. Latest advancements and trends. Anal Chem 78:3887–3907

    Article  CAS  Google Scholar 

  9. Point of Care Diagnostic Testing World Markets (2012) TriMark Publications, LLC http://www.trimarkpublications.com/products/Point-of-Care-Diagnostic-Testing-World-Markets.html. Accessed 12 Nov 2012

  10. Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14:R35

    Article  Google Scholar 

  11. Nisar A, Afzulpurkar N, Mahaisavariya B, Tuantranont A (2008) MEMS-based micropumps in drug delivery and biomedical applications. Sensor Actuat B Chem 130: 917–942

    Article  Google Scholar 

  12. West J, Becker M, Tombrink S, Manz A (2008) Micro total analysis systems: latest achievements. Anal Chem 80:4403–4419

    Article  CAS  Google Scholar 

  13. Mansur EA, Ye M, Wang Y, Dai Y (2008) A state-of-the-art review of mixing in microfluidic mixers. Chin J Chem Eng 16:503–516

    Article  CAS  Google Scholar 

  14. Nam-Trung N, Zhigang W (2005) Micromixers—a review. J Micromech Microeng 15:R1

    Article  Google Scholar 

  15. Tekin H, Sivagnanam V, Ciftlik A, Sayah A, Vandevyver C, Gijs M (2011) Chaotic mixing using source–sink microfluidic flows in a PDMS chip. Microfluid Nanofluid 10:749–759

    Article  CAS  Google Scholar 

  16. Casadevall i Solvas X, Lambert RA, Kulinsky L, Rangel RH, Madou MJ (2009) Au/PPy actuators for active micromixing and mass transport enhancement. Micro Nanosyst 1:2–11

    Google Scholar 

  17. Stroock AD, Dertinger SKW, Ajdari A, Mezić I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295:647–651

    Article  CAS  Google Scholar 

  18. Andersson H, van den Berg A (2003) Microfluidic devices for cellomics: a review. Sensor Actuat B Chem 92:315–325

    Article  Google Scholar 

  19. Yi C, Li C-W, Ji S, Yang M (2006) Microfluidics technology for manipulation and analysis of biological cells. Anal Chim Acta 560:1–23

    Article  CAS  Google Scholar 

  20. Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116

    Article  CAS  Google Scholar 

  21. Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298:580–584

    Article  CAS  Google Scholar 

  22. Madou M, Zoval J, Jia G, Kido H, Kim J, Kim N (2006) Lab on a CD. Annu Rev Biomed Eng 8:601–628

    Article  CAS  Google Scholar 

  23. Abi-Samra K, Hanson R, Madou M, Gorkin Iii RA (2011) Infrared controlled waxes for liquid handling and storage on a CD-microfluidic platform. Lab Chip 11:723–726

    Article  CAS  Google Scholar 

  24. Gorkin R, Park J, Siegrist J, Amasia M, Lee BS, Park J-M, Kim J, Kim H, Madou M, Cho Y-K (2010) Centrifugal microfluidics for biomedical applications. Lab Chip 10:1758–1773

    Article  CAS  Google Scholar 

  25. Jens D et al (2007) The centrifugal microfluidic bio-disk platform. J Micromech Microeng 17:S103

    Article  Google Scholar 

  26. Gaudioso J, Craighead HG (2002) Characterizing electroosmotic flow in microfluidic devices. J Chromatogr A 971:249–253

    Article  CAS  Google Scholar 

  27. Dolnik V, Liu S (2005) Applications of capillary electrophoresis on microchip. J Sep Sci 28:1994–2009

    Article  CAS  Google Scholar 

  28. Bousse L, Cohen C, Nikiforov T, Chow A, Kopf-Sill AR, Dubrow R, Parce JW (2000) Electrokinetically controlled microfluidic analysis systems. Annu Rev Biophys Biomol Struct 29:155–181

    Article  CAS  Google Scholar 

  29. Hunt TP, Issadore D, Westervelt RM (2008) Integrated circuit/microfluidic chip to programmably trap and move cells and droplets with dielectrophoresis. Lab Chip 8:81–87

    Article  CAS  Google Scholar 

  30. Lee J, Moon H, Fowler J, Schoellhammer T, Kim C-J (2002) Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sensor Actuat A Phys 95:259–268

    Article  Google Scholar 

  31. Ali B, Nam-Trung N (2010) Programmable two-dimensional actuation of ferrofluid droplet using planar microcoils. J Micromech Microeng 20:015018

    Article  Google Scholar 

  32. Yeo LY, Friend JR (2009) Ultrafast microfluidics using surface acoustic waves. Biomicrofluidics 3:012002–012023

    Article  Google Scholar 

  33. Wixforth A (2006) Acoustically driven programmable microfluidics for biological and chemical applications. J Assoc Lab Auto 11:399–405

    Article  CAS  Google Scholar 

  34. Xu Q, Hashimoto M, Dang TT, Hoare T, Kohane DS, Whitesides GM, Langer R, Anderson DG (2009) Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery. Small 5:1575–1581

    Article  CAS  Google Scholar 

  35. Shum HC, Bandyopadhyay A, Bose S, Weitz DA (2009) Double emulsion droplets as microreactors for synthesis of mesoporous hydroxyapatite. Chem Mater 21:5548–5555

    Article  CAS  Google Scholar 

  36. Abdelgawad M, Wheeler AR (2009) The digital revolution: a new paradigm for microfluidics. Adv Mater 21:920–925

    Article  CAS  Google Scholar 

  37. Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab Chip 8:198–220

    Article  CAS  Google Scholar 

  38. Casadevall i Solvas X, deMello A (2011) Droplet microfluidics: recent developments and future applications. Chem Commun 47:1936–1942

    Google Scholar 

  39. Kennedy L, Herman WH (2005) Glycated hemoglobin assessment in clinical practice: comparison of the A1cNow™ point-of-care device with central laboratory testing (GOAL A1C study). Diabetes Technol Ther 7:907–912

    Article  CAS  Google Scholar 

  40. Brooks DE, Devine DV, Harris PC, Harris JE, Miller ME, Olal AD, Spiller LJ, Xie ZC (1999) RAMPTM: a rapid quantitative whole blood immunochromatographic platform for point-of-care testing. Clin Chem 45:1676–1678

    Google Scholar 

  41. Mens PF, van Amerongen A, Sawa P, Kager PA, Schallig HDFH (2008) Molecular diagnosis of malaria in the field: development of a novel 1-step nucleic acid lateral flow immunoassay for the detection of all 4 human Plasmodium spp. and its evaluation in Mbita, Kenya. Diagn Microbiol Infect Dis 61:421–427

    Article  CAS  Google Scholar 

  42. Blažková M, Koets M, Rauch P, van Amerongen A (2009) Development of a nucleic acid lateral flow immunoassay for simultaneous detection of Listeria spp. and Listeria monocytogenes in food. Eur Food Res Technol 229:867–874

    Article  Google Scholar 

  43. Assadollahi S, Reininger C, Palkovits R, Pointl P, Schalkhammer T (2009) From lateral flow devices to a novel nano-color microfluidic assay. Sensors 9:6084–6100

    Article  CAS  Google Scholar 

  44. Rudolf Seitz W (1984) Immunoassay labels based on chemiluminescence and bioluminescence. Clin Biochem 17:120–125

    Article  Google Scholar 

  45. Corstjens P, Zuiderwijk M, Brink A, Li S, Feindt H, Niedbala RS, Tanke H (2001) Use of up-converting phosphor reporters in lateral-flow assays to detect specific nucleic acid sequences: a rapid, sensitive dna test to identify human papillomavirus type 16 infection. Clin Chem 47:1885–1893

    CAS  Google Scholar 

  46. Chu X, Fu X, Chen K, Shen G-L, Yu R-Q (2005) An electrochemical stripping metalloimmunoassay based on silver-enhanced gold nanoparticle label. Biosens Bioelectron 20:1805–1812

    Article  CAS  Google Scholar 

  47. von Lode P (2005) Point-of-care immunotesting: Approaching the analytical performance of central laboratory methods. Clin Biochem 38:591–606

    Article  Google Scholar 

  48. Kupstat A, Kumke MU, Hildebrandt N (2011) Toward sensitive, quantitative point-of-care testing (POCT) of protein markers: miniaturization of a homogeneous time-resolved fluoroimmunoassay for prostate-specific antigen detection. Analyst 136:1029–1035

    Article  CAS  Google Scholar 

  49. Tisone TC, O’Farrell B (2009) Manufacturing the next generation of highly sensitive and reproducible lateral flow immunoassay. In: Wong R, Tse H (eds) Lateral flow immunoassay. Humana Press, New York, pp 1–26

    Google Scholar 

  50. Pugia MJ, Blankenstein G, Peters R-P, Profitt JA, Kadel K, Willms T, Sommer R, Kuo HH, Schulman LS (2005) Microfluidic tool box as technology platform for hand-held diagnostics. Clin Chem 51:1923–1932

    Article  CAS  Google Scholar 

  51. Schulte TH, Bardell RL, Weigl BH (2002) Microfluidic technologies in clinical diagnostics. Clin Chim Acta 321:1–10

    Article  CAS  Google Scholar 

  52. Urdea M, Penny LA, Olmsted SS, Giovanni MY, Kaspar P, Shepherd A, Wilson P, Dahl CA, Buchsbaum S, Moeller G, Hay Burgess DC (2006) Requirements for high impact diagnostics in the developing world. Nature 444:3–8

    Google Scholar 

  53. Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH (2006) Microfluidic diagnostic technologies for global public health. Nature 442:412–418

    Article  CAS  Google Scholar 

  54. Pelton R (2009) Bioactive paper provides a low-cost platform for diagnostics. Trends Anal Chem TRAC 28:925–942

    Article  CAS  Google Scholar 

  55. Martinez AW, Phillips ST, Whitesides GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci USA 105:19606–19611

    Article  CAS  Google Scholar 

  56. Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2009) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3–10

    Article  Google Scholar 

  57. Abe K, Suzuki K, Citterio D (2008) Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem 80:6928–6934

    Article  CAS  Google Scholar 

  58. Chitnis G, Ding Z, Chang C-L, Savran CA, Ziaie B (2011) Laser-treated hydrophobic paper: an inexpensive microfluidic platform. Lab Chip 11:1161–1165

    Article  CAS  Google Scholar 

  59. Martinez AW, Phillips ST, Whitesides GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci 105:19606–19611

    Article  CAS  Google Scholar 

  60. Martinez AW, Phillips ST, Wiley BJ, Gupta M, Whitesides GM (2008) FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip 8:2146–2150

    Article  CAS  Google Scholar 

  61. Connelly NR, Magee M, Kiessling B (1996) The use of the iSTAT portable analyzer in patients undergoing cardiopulmonary bypass. J Clin Monit 12:311–315

    Article  CAS  Google Scholar 

  62. Papadea C, Foster J, Grant S, Ballard SA, Cate JC IV, Southgate WM, Purohit DM (2002) Evaluation of the i-STAT portable clinical analyzer for point-of-care blood testing in the intensive care units of a University Children’s Hospital. Ann Clin Lab Sci 32:231–243

    CAS  Google Scholar 

  63. Sykes E, Karcher RE, Eisenstadt J, Tushman DA, Balasubramaniam M, Gusway J, Peterson VJ (2005) Analytical relationships among biosite, Bayer, and Roche methods for BNP and NT-proBNP. Am J Clin Pathol 123:584–590

    Article  CAS  Google Scholar 

  64. Cosmi B, Palareti G, Carpanedo M, Pengo V, Biasiolo A, Rampazzo P, Morstabilini G, Testa S (2000) Assessment of patient capability to self-adjust oral anticoagulant dose: a multicenter study on home use of portable prothrombin time monitor (COAGUCHECK). Haematologica, 85: 826 http://www.roche.com/products/product-list.htm?region=us&type=divdia&id=Diagnostics. Accessed 12 Nov 2012

  65. Guy M, Newall R, Borzomato J, Kalra PA, Price C (2009) Diagnostic accuracy of the urinary albumin: creatinine ratio determined by the CLINITEK Microalbumin and DCA 2000+ for the rule-out of albuminuria in chronic kidney disease. Clinica Chimica Acta, 399: 54-58 http://healthcare.siemens.com/point-of-care/urinalysis/clinitek-status-analyzer. Accessed 12 Nov 2012

  66. Schembri C, Ostoich V, Lingane P, Burd T, Buhl S (1992) Portable simultaneous multiple analyte whole-blood analyzer for point-of-care testing. Clin Chem 38:1665–1670

    CAS  Google Scholar 

  67. Inganas M, Derand H, Eckersten A, Ekstrand G, Honerud A-K, Jesson G, Thorsen G, Soderman T, Andersson P (2005) Integrated microfluidic compact disc device with potential use in both centralized and point-of-care laboratory settings. Clin Chem 51:1985–1987

    Article  Google Scholar 

  68. Honda N, Lindberg U, Andersson P, Hoffmann S, Takei H (2005) Simultaneous multiple immunoassays in a compact disc-shaped microfluidic device based on centrifugal force. Clin Chem 51:1955–1961

    Article  CAS  Google Scholar 

  69. Lee BS, Lee JN, Park JM, Lee JG, Kim S, Cho YK, Ko C (2009) A fully automated immunoassay from whole blood on a disc. Lab Chip 9:1548–1555

    Article  CAS  Google Scholar 

  70. Steigert J, Grumann M, Brenner T, Riegger L, Harter J, Zengerle R, Ducree J (2006) Fully integrated whole blood testing by real-time absorption measurement on a centrifugal platform. Lab Chip 6:1040–1044

    Article  CAS  Google Scholar 

  71. Haeberle S, Brenner T, Zengerle R, Ducre J (2006) Centrifugal extraction of plasma from whole blood on a rotating disk. Lab Chip 6:776

    Article  CAS  Google Scholar 

  72. Kido H, Micic M, Smith D, Zoval J, Norton J, Madou M (2007) A novel, compact disk-like centrifugal microfluidics system for cell lysis and sample homogenization. Colloids Surf B Biointerfaces 58:44–51

    Article  CAS  Google Scholar 

  73. Siegrist J, Gorkin R, Bastien M, Stewart G, Peytavi R, Kido H, Bergeron M, Madou M (2010) Validation of a centrifugal microfluidic sample lysis and homogenization platform for nucleic acid extraction with clinical samples. Lab Chip 10:363–371

    Article  CAS  Google Scholar 

  74. Arora A, Simone G, Salieb-Beugelaar GB, Kim JT, Manz A (2010) Latest developments in micro total analysis systems. Anal Chem 82:4830–4847

    Article  CAS  Google Scholar 

  75. Abgrall P, Gué AM (2007) Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review. J Micromech Microeng 17:R15

    Article  Google Scholar 

  76. Vandaveer WR, Pasas-Farmer SA, Fischer DJ, Frankenfeld CN, Lunte SM (2004) Recent developments in electrochemical detection for microchip capillary electrophoresis. Electrophoresis 25:3528–3549

    Article  CAS  Google Scholar 

  77. Vrouwe EX, Luttge R, Vermes I, van den Berg A (2007) Microchip capillary electrophoresis for point-of-care analysis of lithium. Clin Chem 53:117–123

    Article  CAS  Google Scholar 

  78. Shinkai M (2002) Functional magnetic particles for medical application. J Biosci Bioeng 94:606–613

    CAS  Google Scholar 

  79. Zhang H, Meyerhoff ME (2005) Gold-coated magnetic particles for solid-phase immunoassays: enhancing immobilized antibody binding efficiency and analytical performance. Anal Chem 78:609–616

    Article  Google Scholar 

  80. Nicu L, Leïchlé T (2008) Biosensors and tools for surface functionalization from the macro- to the nanoscale: the way forward. J Appl Phys 104:111101

    Article  Google Scholar 

  81. Leca-Bouvier B, Blum LJ (2005) Biosensors for protein detection: a review. Anal Lett 38:1491–1517

    Article  CAS  Google Scholar 

  82. Monat C, Domachuk P, Eggleton BJ (2007) Integrated optofluidics: a new river of light. Nat Photon 1:106–114

    Article  CAS  Google Scholar 

  83. Erickson D (2010) Optofluidics. In: Kakaç S, Kosoy B, Li D, Pramuanjaroenkij A (eds) Microfluidics based microsystems. Springer, Netherlands, pp 529–551

    Google Scholar 

  84. Yu X, Xu D, Cheng Q (2006) Label-free detection methods for protein microarrays. Proteomics 6:5493–5503

    Article  CAS  Google Scholar 

  85. Wang J, Ahmad H, Ma C, Shi Q, Vermesh O, Vermesh U, Heath J (2010) A self-powered, one-step chip for rapid, quantitative and multiplexed detection of proteins from pinpricks of whole blood. Lab Chip 10:3157–3162

    Article  CAS  Google Scholar 

  86. Blick KE (2001) The essential role of information management in point-of-care/critical care testing. Clin Chim Acta 307:159–168

    Article  CAS  Google Scholar 

  87. Zhang Y, Ozdemir P (2009) Microfluidic DNA amplification – a review. Anal Chim Acta 638:115–125

    Article  CAS  Google Scholar 

  88. Lee HH, Dineva MA, Chua YL, Ritchie AV, Ushiro-Lumb I, Wisniewski CA (2010) Simple amplification-based assay: a nucleic acid-based point-of-care platform for HIV-1 testing. J Infect Dis 201(Suppl 1):S65–S72

    Article  CAS  Google Scholar 

  89. Lee WG, Kim Y-G, Chung BG, Demirci U, Khademhosseini A (2010) Nano/microfluidics for diagnosis of infectious diseases in developing countries. Adv Drug Deliv Rev 62:449–457

    Article  CAS  Google Scholar 

  90. Lien K-Y, Lee G-B (2010) Miniaturization of molecular biological techniques for gene assay. Analyst 135:1499–1518

    Article  CAS  Google Scholar 

  91. McNiven M, Talaulikar D (2012) Establishment of a conversion factor for the Cepheid GeneXpert BCR-ABL assay. Pathology, 44: 55–57 http://www.cepheid.com/systems-and-software/­genexpert-system/. Accessed 12 Nov 2012

  92. Coombs R, Dragavon J, Harb S (2011) Validation of a novel lab-in-a-tube analyzer and single-tube system for simple/rapid HIV-1 RNA quantification. 18th conference on retroviruses and opportunistic infections http://www.iquum.com/about/about.shtml. Accessed 12 Nov 2012

  93. Tayo A, Ellis J, Phillips LL, Simpson S, Ward DJ (2012) Emerging point of care tests for influenza: innovation or status quo. Influenza and Other Respiratory Viruses, 6: 291-298 http://www.enigmadiagnostics.com/template2.php?page=instruments.php&m=5. Accessed 12 Nov 2012

  94. Hammond SP, Gagne LS, Stock SR, Marty FM, Gelman RS, Marasco WA, Poritz MA, Baden LR (2012) Respiratory Virus Detection in Immunocompromised Patients with FilmArray Respiratory Panel Compared to Conventional Methods. Journal of Clinical Microbiology, 50: 3216-3221 http://www.idahotech.com/FilmArray/. Accessed 12 Nov 2012

    Google Scholar 

  95. Hua Z, Rouse JL, Eckhardt AE, Srinivasan V, Pamula VK, Schell WA, Benton JL, Mitchell TG, Pollack MG (2010) Multiplexed real-time polymerase chain reaction on a digital microfluidic platform. Anal Chem 82:2310–2316

    Article  CAS  Google Scholar 

  96. Thaitrong N, Liu P, Briese T, Lipkin WI, Chiesl TN, Higa Y, Mathies RA (2010) Integrated capillary electrophoresis microsystem for multiplex analysis of human respiratory viruses. Anal Chem 82:10102–10109

    Article  CAS  Google Scholar 

  97. Chen L, Manz A, Day PJ (2007) Total nucleic acid analysis integrated on microfluidic devices. Lab Chip 7:1413–1423

    Article  CAS  Google Scholar 

  98. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:e63

    Article  CAS  Google Scholar 

  99. Holland CA, Kiechle FL (2005) Point-of-care molecular diagnostic systems – past, present and future. Curr Opin Microbiol 8:504–509

    Article  Google Scholar 

  100. Dineva MA, Mahilum-Tapay L, Lee H (2007) Sample preparation: a challenge in the development of Point-of-Care nucleic acid-based assays for resource-limited settings. Analyst 132:1193

    Article  CAS  Google Scholar 

  101. Huang Y, Mather EL, Bell JL, Madou M (2002) MEMS-based sample preparation for molecular diagnostics. Anal Bioanal Chem 372:49–65

    Article  CAS  Google Scholar 

  102. Kulinski MD, Mahalanabis M, Gillers S, Zhang JY, Singh S, Klapperich CM (2009) Sample preparation module for bacterial lysis and isolation of DNA from human urine. Biomed Microdevices 11:671–678

    Article  CAS  Google Scholar 

  103. Blow N (2007) Microfluidics: in search of a killer application. Nat Methods 4:665–670

    Article  CAS  Google Scholar 

  104. Becker H (2009) Hype, hope and hubris: the quest for the killer application in microfluidics. Lab Chip 9:2119–2122

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation grants ECCS-0801792 and NIRT-0709085, National Institute of Health grant 1 R01 AIO89541-01, and UC Lab Fees Award 09-LR-09-117362 and sponsored by World Class University (WCU) program (R32-2008-000-20054-0) through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence Kulinsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media,LLC

About this protocol

Cite this protocol

Kulinsky, L., Noroozi, Z., Madou, M. (2013). Present Technology and Future Trends in Point-of-Care Microfluidic Diagnostics. In: Jenkins, G., Mansfield, C. (eds) Microfluidic Diagnostics. Methods in Molecular Biology, vol 949. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-134-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-134-9_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-133-2

  • Online ISBN: 978-1-62703-134-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics