Skip to main content

Optimized Technique for Subretinal Injections in Mice

  • Protocol
  • First Online:
Retinal Degeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 935))

Abstract

Subretinal injections in mice become increasingly important. Currently, the most prominent application is in gene therapy of inherited eye diseases by means of viral vector delivery to photoreceptors or the retinal pigment epithelium (RPE). Since there are no large animal models for most of these diseases, genetically modified mouse models are commonly used in preclinical proof-of-concept studies. However, because of the relatively small mouse eye, adverse effects of the subretinal delivery procedure itself may interfere with the therapeutic outcome. The protocol described here concerns a transscleral pars plana subretinal injection in small eyes, and may be used for but not limited to virus-mediated gene transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCown TJ (2005) Adeno-associated virus (AAV) vectors in the CNS. Curr Gene Ther 5:333–338 (Review)

    Article  PubMed  CAS  Google Scholar 

  2. Marks WJ Jr, Ostrem JL, Verhagen L et al (2008) Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol 7:400–408

    Article  PubMed  Google Scholar 

  3. den Hollander AI, Black A, Bennett J (2010) Lighting a candle in the dark: advances in genetics and gene therapy of recessive retinal dystrophies. J Clin Invest 120:3042–3053

    Article  PubMed  CAS  Google Scholar 

  4. Bainbridge JW, Smith AJ, Barker SS et al (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358:2231–2239

    Article  Google Scholar 

  5. Bennett J, Ashtari M, Wellman J et al (2012) AAV2 gene therapy readministration in three adults with congenital blindness. Sci Transl Med 4, 120ra15

    Article  PubMed  CAS  Google Scholar 

  6. Jacobson SG, Cideciyan AV, Ratnakaram R et al (2012) Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol 130:9–24

    Article  PubMed  CAS  Google Scholar 

  7. Timmers AM, Zhang H, Squitieri A et al (2001) Subretinal injections in rodent eyes: effects on electrophysiology and histology of rat retina. Mol Vis 7:131–137

    PubMed  CAS  Google Scholar 

  8. Johnson CJ, Berglin L, Chrenek MA et al (2008) Technical brief: subretinal injection and electroporation into adult mouse eyes. Mol Vis 14:2211–2226

    PubMed  CAS  Google Scholar 

  9. Busskamp V, Duebel J, Balya D et al (2010) Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329:413–417

    Article  PubMed  CAS  Google Scholar 

  10. Price J, Turner D, Cepko C et al (1987) Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc Natl Acad Sci U S A 84:156–160

    Article  PubMed  CAS  Google Scholar 

  11. Schlichtenbrede FC, da Cruz L, Stephens C et al (2003) Long-term evaluation of retinal function in Prph2Rd2/Rd2 mice following AAV-mediated gene replacement therapy. J Gene Med 5:757–764

    Article  PubMed  CAS  Google Scholar 

  12. Alexander JJ, Umino Y, Everhart D et al (2007) Restoration of cone vision in a mouse model of achromatopsia. Nat Med 13:685–687

    Article  PubMed  CAS  Google Scholar 

  13. Janssen A, Min SH, Molday LL et al (2008) Effect of late-stage therapy on disease progression in AAV-mediated rescue of photoreceptor cells in the retinoschisin-deficient mouse. Mol Ther 16:1010–1017

    Article  PubMed  CAS  Google Scholar 

  14. Cideciyan AV, Hauswirth WW, Aleman TS et al (2009) Human RPE65 gene therapy for Leber congenital amaurosis: persistence of early visual improvements and safety at 1 year. Hum Gene Ther 20:999–1004

    Article  PubMed  CAS  Google Scholar 

  15. Simonelli F, Maguire AM, Testa F et al (2010) Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther 18:643–650

    Article  PubMed  CAS  Google Scholar 

  16. Palfi A, Millington-Ward S, Chadderton N et al (2010) Adeno-associated virus-mediated rhodopsin replacement provides therapeutic benefit in mice with a targeted disruption of the rhodopsin gene. Hum Gene Ther 21:311–323

    Article  PubMed  CAS  Google Scholar 

  17. Sun X, Pawlyk B, Xu X et al (2010) Gene therapy with a promoter targeting both rods and cones rescues retinal degeneration caused by AIPL1 mutations. Gene Ther 17:117–131

    Article  PubMed  CAS  Google Scholar 

  18. Towne C, Setola V, Schneider BL et al (2011) Neuroprotection by gene therapy targeting mutant SOD1 in individual pools of motor neurons does not translate into therapeutic benefit in fALS mice. Mol Ther 19:274–283

    Article  PubMed  CAS  Google Scholar 

  19. Lhériteau E, Libeau L, Mendes-Madeira A et al (2010) Regulation of retinal function but nonrescue of vision in RPE65-deficient dogs treated with doxycycline-regulatable AAV vectors. Mol Ther 18:1085–1093

    Article  PubMed  Google Scholar 

  20. Bainbridge JW, Mistry A, Schlichtenbrede FC et al (2003) Stable rAAV-mediated transduction of rod and cone photoreceptors in the canine retina. Gene Ther 10:1336–1344

    Article  PubMed  CAS  Google Scholar 

  21. Liang FQ, Anand V, Maguire AM et al (2001) Intraocular delivery of recombinant virus. Methods Mol Med 47:125–139

    PubMed  CAS  Google Scholar 

  22. Michalakis S, Mühlfriedel R, Tanimoto N et al (2010) Restoration of cone vision in the CNGA3−/− mouse model for congenital complete lack of cone photoreceptor function. Mol Ther 18:2057–2063

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Deutsche Forschungsgemeinschaft (Se837/6-1, Se837/7-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regine Mühlfriedel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mühlfriedel, R., Michalakis, S., Garrido, M.G., Biel, M., Seeliger, M.W. (2012). Optimized Technique for Subretinal Injections in Mice. In: Weber, B., LANGMANN, T. (eds) Retinal Degeneration. Methods in Molecular Biology, vol 935. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-080-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-080-9_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-079-3

  • Online ISBN: 978-1-62703-080-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics